精英家教网 > 高中数学 > 题目详情

【题目】如图,在平面直角坐标系中,椭圆经过点,离心率为. 已知过点的直线与椭圆交于两点

(1)求椭圆的方程;

(2)试问轴上是否存在定点,使得为定值.若存在,求出点的坐标;若不存在,请说明理由.

【答案】(1);(2).

【解析】分析:(1)先根据已知得到三个方程解方程组即得椭圆C的方程. (2)N(n,0),先讨论l斜率不存在的情况得到n=4,再证明当N(4,0)时,对斜率为k的直线lyk(x),恒有=12.

详解:(1)离心率e,所以caba

所以椭圆C的方程为

因为椭圆C经过点,所以\

所以b2=1,所以椭圆C的方程为

2)设N(n,0),

l斜率不存在时,A(y),B(,-y),y2=1-

=(n)2y2=(n)2n2n

l经过左右顶点时,=(-2-n)(2-n)=n2-4.

n2nn2-4,n=4.

下面证明当N(4,0)时,对斜率为k的直线lyk(x),恒有=12.

A(x1y1),B(x2y2),

消去y,得(4k2+1)x2k2xk2-4=0,

所以x1x2x1x2

所以=(x1-4)(x2-4)+y1y2

=(x1-4)(x2-4)+k2(x1)(x2)

=(k2+1)x1x2-(4+k2)(x1x2)+16+k2

=(k2+1) -(4+k2) +16+k2

+16=12.

所以在x轴上存在定点N(4,0),使得为定值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某学校微信公众号收到非常多的精彩留言,学校从众多留言者中抽取了100人参加“学校满意度调查”,其留言者年龄集中在之间,根据统计结果,做出频率分布直方图如下:

(1)求这100位留言者年龄的平均数和中位数;

(2)学校从参加调查的年龄在的留言者中,按照分层抽样的方法,抽出了6人参加“精彩留言”经验交流会,赠与年龄在的留言者每人一部价值1000元的手机,年龄在的留言者每人一套价值700元的书,现要从这6人中选出3人作为代表发言,求这3位发言者所得纪念品价值超过2300元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某个部件由三个元件按如图所示的方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:时)均服从正态分布N(1000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线,若直线上存在点,过点引圆的两条切线,使得,则实数的取值范围是( )

A. B. [,]

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为

(1)求频率分布图中的值,并估计该企业的职工对该部门评分不低于80的概率;

(2)从评分在的受访职工中,随机抽取2人,求此2人评分都在的概率..

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1) 求函数的反函数

(2)试问:函数的图象上是否存在关于坐标原点对称的点若存在,求出这些点的坐标若不存在,说明理由;

(3)若方程的三个实数根满足: 求实数的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱ABC-A1B1C1的所有棱长都为2,DCC1中点.

(1)求证:AB1⊥平面A1BD;

(2)求锐二面角A-A1D-B的余弦值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】张先生2018年年底购买了一辆排量的小轿车,为积极响应政府发展森林碳汇(指森林植物吸收大气中的二氧化碳并将其固定在植被或土壤中)的号召,买车的同时出资1万元向中国绿色碳汇基金会购买了 2亩荒山用于植树造林.科学研究表明:轿车每行驶3000公里就要排放1吨二氧化碳,林木每生长1立方米,平均可吸收1.8吨二氧化碳.

1)若张先生第一年(即2019年)会用车1.2万公里,以后逐年増加1000公里,则该轿车使用10年共要排放二氧化碳多少吨?

2)若种植的林木第一年(即2019年)生长了1立方米,以后每年以10%的生长速度递增,问林木至少生长多少年,吸收的二氧化碳的量超过轿车使用10年排出的二氧化碳的量(参考数据:?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设实部为正数的复数z满足,且(1+2i)z在复平面上对应的点在第一、三象限的角平分线上.

1)求复数z

2)若为纯虚数 , m的值.

查看答案和解析>>

同步练习册答案