如图所示,在正三角形ABC中,D,E,F分别为各边的中点,G,H分别为DE,AF的中点,将△ABC沿DE,EF,DF折成正四面体P-DEF,则四面体中异面直线PG与DH所成的角的余弦值为________.
科目:高中数学 来源:2014年高考数学(文)二轮专题复习与测试专题1第2课时练习卷(解析版) 题型:选择题
已知偶函数f(x)当x∈[0,+∞)时是单调递增函数,则满足f()<f(x)的x的取值范围是( )
A.(2,+∞) B.(-∞,-1)
C.[-2,-1)∪(2,+∞) D.(-1,2)
查看答案和解析>>
科目:高中数学 来源:2014年高考数学理复习方案二轮作业手册新课标·通用版专题六练习卷(解析版) 题型:填空题
已知等差数列{an}的首项为a1,公差为d,其前n项和为Sn,若直线y=a1x与圆(x-2)2+y2=4的两个交点关于直线x+y+d=0对称,则Sn=________.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学理复习方案二轮作业手册新课标·通用版专题八练习卷(解析版) 题型:选择题
已知函数f(x)=2x+1,x∈N*.若?x0,n∈N*,使f(x0)+f(x0+1)+…+f(x0+n)=63成立,则称(x0,n)为函数f(x)的一个“生成点”.则函数f(x)的“生成点”共有( )
A.1个 B.2个 C.3个 D.4个
查看答案和解析>>
科目:高中数学 来源:2014年高考数学理复习方案二轮作业手册新课标·通用版专题八练习卷(解析版) 题型:选择题
已知f(x)是奇函数,g(x)是偶函数,且f(-1)+g(1)=2,f(1)+g(-1)=4,则g(1)等于( )
A.4 B.3 C.2 D.1
查看答案和解析>>
科目:高中数学 来源:2014年高考数学理复习方案二轮作业手册新课标·通用版专题五练习卷(解析版) 题型:选择题
已知m,n是空间两条不同的直线,α,β,γ是三个不同的平面,则下列命题中为真的是( )
A.若α∥β,m?α,n?β,则m∥n
B.若α∩γ=m,β∩γ=n,m∥n,则α∥β
C.若m?β,α⊥β,则m⊥α
D.若m⊥β,m∥α,则α⊥β
查看答案和解析>>
科目:高中数学 来源:2014年高考数学理复习方案二轮作业手册新课标·通用版专题二练习卷(解析版) 题型:解答题
设函数f(x)=ln x+x2-(a+1)x(a>0,a为常数).
(1)讨论f(x)的单调性;
(2)若a=1,证明:当x>1时,f(x)< x2--.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学理复习方案二轮作业手册新课标·通用版专题三练习卷(解析版) 题型:填空题
在△ABC中,a,b,c分别为角A,B,C的对边,三边a,b,c成等差数列,且B=,则|cos A-cos C|的值为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com