精英家教网 > 高中数学 > 题目详情

如图,在直三棱柱中,.若的中点,求直线与平面所成的角.

60°

解析试题分析:因为在直三棱柱中,.若的中点,需求直线与平面所成的角.可以建立直角坐标系,通过平面的法向量与直线所在的向量的夹角的余弦值即为直线与平面所成角的正弦值.即可得结论.另外也可以通过构建直线所成的角,通过解三角形求得结论.
试题解析:方法一:如图1以为原点,所在直线为轴,所在直线为轴,
所在直线为轴建系,则,则            2分;

设平面A1BC1的一个法向量
,取,则                   6分
AD与平面A1BC1所成的角为

=                               10分
,∴AD与平面A1BC1所成的角为             12分
方法二:由题意知四边形AA1B1B是正方形,故AB1BA1
AA1⊥平面A1B1C1AA1A1C1
A1C1A1B1,所以A1C1⊥平面AA1B1B,故A1C1AB1
从而得 AB1⊥平面A1BC1.                                                4分
AB1A1B相交于点O,则点O是线段AB1的中点.
连接AC1,由题意知△AB1C1是正三角形.
ADC1O是△AB1C1的中线知:ADC1O的交点为重心G,连接OG
AB1⊥平面A1BC1,故OGAD在平面A1BC1上的射影,
于是∠AGOAD与平面A1BC1所成的角.                                      6分
在直角△AOG中,AGADAB1AB, AOAB
所以sin∠AGO.                                           10分
故∠AGO=60°,即AD与平面A1BC1所成的角为60°.&

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,平面ABCD,AD//BC,BC=2AD,AC,Q是线段PB的中点.

(1)求证:平面PAC;
(2)求证:AQ//平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是正方形,侧面底面分别为中点,
(Ⅰ)求证:∥平面
(Ⅱ)求二面角的余弦值;
(Ⅲ)在棱上是否存在一点,使平面?若存在,指出点的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形ABCD是菱形,四边形MADN是矩形,平面MADN平面ABCD,E,F分别为MA,DC的中点,求证:

(1)EF//平面MNCB;
(2)平面MAC平面BND.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面为一直角梯形,侧面PAD是等边三角形,其中,平面底面的中点.
 
(1)求证://平面
(2)求证:
(3)求与平面所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

四棱锥底面是菱形,,分别是的中点.

(1)求证:平面⊥平面
(2)上的动点,与平面所成的最大角为,求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形ABCD与四边形都为正方形,,F
为线段的中点,E为线段BC上的动点.

(1)当E为线段BC中点时,求证:平面AEF;
(2)求证:平面AEF平面;
(3)设,写出为何值时MF⊥平面AEF(结论不要求证明).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1,在Rt△ABC中,∠ABC=90°,DAC中点,(不同于点),延长AEBCF,将△ABD沿BD折起,得到三棱锥,如图2所示.

(1)若MFC的中点,求证:直线//平面
(2)求证:BD
(3)若平面平面,试判断直线与直线CD能否垂直?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱ABCA1B1C1中,A1B⊥平面ABC,AB⊥AC,且AB=AC=A1B=2.

(1)求棱AA1与BC所成的角的大小;
(2)在棱B1C1上确定一点P,使二面角P-AB-A1的平面角的余弦值为.

查看答案和解析>>

同步练习册答案