【题目】如果一个数列从第2项起,每一项与它前一项的差都大于2,则称这个数列为“H型数列”.
(1)若数列{an}为“H型数列”,且a1= ﹣3,a2= ,a3=4,求实数m的取值范围;
(2)是否存在首项为1的等差数列{an}为“H型数列”,且其前n项和Sn满足Sn<n2+n(n∈N*)?若存在,请求出{an}的通项公式;若不存在,请说明理由.
(3)已知等比数列{an}的每一项均为正整数,且{an}为“H型数列”,bn= an , cn= ,当数列{bn}不是“H型数列”时,试判断数列{cn}是否为“H型数列”,并说明理由.
【答案】
(1)解:由题意得,a2﹣a1=3>2,a3﹣a2=4﹣ >2,即2﹣ = >0,解得m 或m<0.
∴实数m的取值范围时(﹣∞,0)∪
(2)解:假设存在等差数列{an}为“H型数列”,设公差为d,则d>2,由a1=1,可得:Sn=n+ ,由题意可得:n+ <n2+n对n∈N*都成立,即d 都成立.∵ =2+ >2,且 =2,∴d≤2,与d>2矛盾,因此不存在等差数列{an}为“H型数列”
(3)解:设等比数列{an}的公比为q,则an= ,且每一项均为正整数,且an+1﹣an=an(q﹣1)>2>0,
∴a1>0,q>1.∵an+1﹣an=an(q﹣1)>an﹣an﹣1,即在数列{an﹣an﹣1}(n≥2)中,“a2﹣a1”为最小项.
同理在数列{bn﹣bn﹣1}(n≥2)中,“b2﹣b1”为最小项.由{an}为“H型数列”,可知只需a2﹣a1>2,
即 a1(q﹣1)>2,又因为{bn}不是“H型数列”,且“b2﹣b1”为最小项,∴b2﹣b1≤2,即 a1(q﹣1)≤3
,由数列{an}的每一项均为正整数,可得 a1(q﹣1)=3,∴a1=1,q=4或a1=3,q=2,
①当a1=1,q=4时, ,则 ,令 ,则 ,令 ,则
= ,
∴{dn}为递增数列,
即 dn>dn﹣1>dn﹣2>…>d1,
即 cn+1﹣cn>cn﹣cn﹣1>cn﹣1﹣cn﹣2>…>c2﹣c1,
∵ ,所以,对任意的n∈N*都有cn+1﹣cn>2,
即数列{cn}为“H型数列”.②当a1=3,q=2时, ,
则 ,显然,{cn}为递减数列,c2﹣c1<0≤2,
故数列{cn}不是“H型数列”;
综上:当 时,数列{cn}为“H型数列”,
当 时,数列{cn}不是“H型数列”
【解析】(1)由题意得,a2﹣a1=3>2,a3﹣a2=4﹣ >2,即2﹣ = >0,解得m范围即可得出.(2)假设存在等差数列{an}为“H型数列”,设公差为d,则d>2,由a1=1,可得:Sn=n+ ,由题意可得:n+ <n2+n对n∈N*都成立,即d 都成立.解出即可判断出结论.(3)设等比数列{an}的公比为q,则an= ,且每一项均为正整数,且an+1﹣an=an(q﹣1)>2>0,可得an+1﹣an=an(q﹣1)>an﹣an﹣1 , 即在数列{an﹣an﹣1}(n≥2)中,“a2﹣a1”为最小项.同理在数列{bn﹣bn﹣1}(n≥2)中,“b2﹣b1”为最小项.由{an}为“H型数列”,可知只需a2﹣a1>2,即 a1(q﹣1)>2,又因为{bn}不是“H型数列”,且“b2﹣b1”为最小项,可得b2﹣b1≤2,即 a1(q﹣1)≤3,由数列{an}的每一项均为正整数,可得 a1(q﹣1)=3,a1=1,q=4或a1=3,q=2,通过分类讨论即可判断出结论.
【考点精析】解答此题的关键在于理解数列的前n项和的相关知识,掌握数列{an}的前n项和sn与通项an的关系.
科目:高中数学 来源: 题型:
【题目】已知a是常数,对任意实数x,不等式|x+1|﹣|2﹣x|≤a≤|x+1|+|2﹣x|都成立.
(Ⅰ)求a的值;
(Ⅱ)设m>n>0,求证:2m+ ≥2n+a.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 .
(1)求f(x)单调递减区间;
(2)已知△ABC中,满足sin2B+sin2C>sinBsinC+sin2A,求f(A)的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1=1,a2=3,若|an+1﹣an|=2n(n∈N*),且{a2n﹣1}是递增数列、{a2n}是递减数列,则 = .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的组合体中,三棱柱ABC﹣A1B1C1的侧面ABB1A1是圆柱的轴截面,C是圆柱底面圆周上不与A、B重合的一个点.
(Ⅰ)若圆柱的轴截面是正方形,当点C是弧AB的中点时,求异面直线A1C与AB1的所成角的大小;
(Ⅱ)当点C是弧AB的中点时,求四棱锥A1﹣BCC1B1与圆柱的体积比.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设双曲线C: ,F1 , F2为其左右两个焦点.
(1)设O为坐标原点,M为双曲线C右支上任意一点,求 的取值范围;
(2)若动点P与双曲线C的两个焦点F1 , F2的距离之和为定值,且cos∠F1PF2的最小值为 ,求动点P的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆C: 过点M(2,0),且右焦点为F(1,0),过F的直线l与椭圆C相交于A,B两点.设点P(4,3),记PA,PB的斜率分别为k1和k2 .
(1)求椭圆C的方程;
(2)如果直线l的斜率等于﹣1,求出k1k2的值;
(3)探讨k1+k2是否为定值?如果是,求出该定值;如果不是,求出k1+k2的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三棱柱ABC﹣A1B1C1的底面是锐角三角形,则存在过点A的平面( )
A.与直线BC和直线A1B1都平行
B.与直线BC和直线A1B1都垂直
C.与直线BC平行且直线A1B1垂直
D.与直线BC和直线A1B1所成角相等
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com