精英家教网 > 高中数学 > 题目详情
已知椭圆的长轴、短轴、焦距长度之和为8,则长半轴的最小值是(  )
A、4
B、4
2
C、4(
2
-1)
D、2(
2
-1)
考点:椭圆的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:设长轴为2a,短轴为2b,焦距为2c,则2a+2b+2c=8,整理后两边平方根据均值不等式可得(4-a)2≤2a2,进而求得a的范围.
解答: 解:设长轴为2a,短轴为2b,焦距为2c,则2a+2b+2c=8,即a+b+c=4
∴(b+c)2=(4-a)2≤2(b2+c2)=2a2
即可得等式(4-a)2≤2a2,即a2+8a-16≥0
解之得a≤-4-4
2
(舍)或a≥4
2
-4
故a的最小值为4(
2
-1).
故选:C.
点评:本题主要考查了椭圆性质,考查学生的计算能力.属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2x,x≥0
x2,x<0
,则函数f(x)=f(f(x))的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某商品每件成本价80元,售价100元,每天售出100件.若售价降低x成(1成=10%),售出商品数量就增加
8
50
x
成,要求售价不能低于成本价.
(1)设该商店一天的营业额为y,试求y与x之间的函数关系式y=f(x),并写出定义域;
(2)若该商品一天营业额至少10260元,求商品定价应在哪个范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=
3x+1
3x+1
的值域是(  )
A、(3,+∞)
B、(0,3)
C、(0,2)
D、(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)满足f(x+1)-f(x)=2x-1,且f(0)=3.
(1)求f(x)的解析式;
(2)若x∈[-1,1]时,f(x)≥2mx恒成立,求实数m的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线(a2+4a+3)x+(a2+a-6)y-6=0与x-2y-1=0垂直,则a等于(  )
A、.5B、.5或-3
C、.-3D、不存在

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且有a1=2,3Sn=5an-an-1(n≥2)
(Ⅰ)求数列an的通项公式;
(Ⅱ)若bn=(2n-1)an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

平面内有一个长度为4的线段AB,动点P满足|PA|+|PB|=6,则|PA|长的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn是等差数列{an}的前n项和,若 
a6
a5
=
9
11
,则 
S11
S9
=
 

查看答案和解析>>

同步练习册答案