分析 (1)根据抽象函数“凑”的原则,分别令x1=x2=1,即可求出f(1)的值;
(2)由单调性定义,0<x1<x2,化简得到f(x1)>f(x2),即得到函数为减函数;
(3)令x1=9,x2=3,求得f(9)=-2,再根据函数的定义域和单调性即可求出不等式的解.
解答 解:(1)∵f($\frac{{x}_{1}}{{x}_{2}}$)=f(x1)-f(x2),
∴令x1=x2,则f(1)=0;
(2)定义在区间(0,+∞)上的函数f(x)为减函数,
理由如下:设0<x1<x2,
则0<$\frac{{x}_{1}}{{x}_{2}}$<1,
∵0<x<1时,f(x)>0,
∴f($\frac{{x}_{1}}{{x}_{2}}$)>0,
∴f(x1)-f(x2)>0,即f(x1)>f(x2),
∴函数f(x)在区间(0,+∞)上为减函数.
(3)令x1=9,x2=3,
则f(3)=f(9)-f(3),
∴f(9)=2f(3)=-2,
∵f(|x|)<-2.
∴f(|x|)<f(9),
∴|x|>9,
∵x∈(0,+∞),
∴x>9,
∴不等式f(|x|)<-2的解集为(9,+∞)
点评 本题考查抽象函数及应用,考查函数的单调性,注意运用定义,同时考查解决抽象函数的常用方法:赋值法,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | ($\frac{1}{4},1$] | B. | (1,$\frac{3}{2}$] | C. | ($\frac{3}{2},\frac{8}{5}$] | D. | (2,3] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -2 | B. | 2 | C. | 98 | D. | -98 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com