精英家教网 > 高中数学 > 题目详情

【题目】[选修4-4:坐标系与参数方程]:在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的直角坐标方程;

(2)判断曲线是否相交,若相交,请求出交点间的距离;若不相交,请说明理由.

【答案】(1) (2)

【解析】

(1)由题意,消去参数,即可得到曲线的直角坐标方程,再利用极坐标与直角坐标的互化,即可得到曲线的直角坐标方程;

(2)由(1),将代入曲线,求得,在由曲线两交点间的距离公式,即可求解。

(1)将,消去参数,得曲线的直角坐标方程为

展开整理,得

因为

所以曲线的直角坐标方程为.

(2)由(1)知曲线是过定点的直线,因为点在曲线的内部,所以曲线与曲线相交.将代入并整理,得

设曲线的两交点为,则

故曲线两交点间的距离 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某种产品的质量以其质量指标值来衡量,质量指标值越大表明质量越好,记其质量指标值为,当时,产品为一级品;当时,产品为二级品,当时,产品为三级品,现用两种新配方(分别称为配方和配方)做实验,各生产了件这种产品,并测量了每件产品的质量指标值,得到下面的试验结果 :(以下均视频率为概率)

配方的频数分配表:

指标值分组

频数

配方的频数分配表:

指标值分组

频数

(1)若从配方产品中有放回地随机抽取件,记“抽出的配方产品中至少件二级品”为事件,求事件发生的概率

(2)若两种新产品的利润率与质量指标满足如下关系:,其中,从长期来看,投资哪种配方的产品平均利润率较大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)若,函数在区间上恰有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】:实数满足不等式:函数无极值点.

1)若“”为假命题,“”为真命题,求实数的取值范围;

2)若“为真命题”是“”的必要不充分条件,求正整数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:100mL血液中酒精含量低于20mg的驾驶员可以驾驶汽车,酒精含量达到2079mg的驾驶员即为酒后驾车,80mg及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了1mg/mL.如果在停止喝酒以后,他血液中酒精含量会以每小时30%的速度减少,那么他至少经过几个小时才能驾驶汽车?(  )(参考数据:lg0.2≈0.71g0.3≈0.51g0.7≈0.151g0.8≈0.1

A.1B.3C.5D.7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数yfx),若在其定义域内存在x0,使得x0fx0)=1成立,则称函数fx)具有性质M

1)下列函数中具有性质M的有____

fx)=﹣x+2

fx)=sinxx[02π]

fx)=x,(x∈(0+∞))

fx

2)若函数fx)=a|x2|1)(x[1+∞))具有性质M,则实数a的取值范围是____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

(1)讨论的单调性;

(2)若有两个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定平面上的五个点A、B、C、D、E,任意三点不共线.由这些点连成4条线,每点至少是一条线段的端点,不同的联结方式有 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某建筑物的基本单元可近似地按以下方法构作:先在地平面a内作菱形ABCD,边长为1,BAD=60°,再在a的上方,分别以ABDCBD为底面安装上相同的正棱锥P-ABDQ-CBD,APB=90°.

(1)求二面角P-BD-Q的余弦值;

(2)求点P到平面QBD的距离.

查看答案和解析>>

同步练习册答案