精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在极坐标系中,已知曲线 ,设交于点.

(1)求点的极坐标;

(2)若直线过点,且与曲线交于两不同的点,求的最小值.

【答案】(1) (2)

【解析】试题分析:(1)根据将曲线 极坐标方程化为直角坐标方程,求出交点的直角坐标,再根据将直角坐标化为极坐标(2)根据将曲线极坐标方程化为直角坐标方程,设直线参数方程代入,利用参数几何意义得 ,再根据韦达定理代入化简得 ,最后根据三角函数有界性得最小值

试题解析:解:(I)由解得点的直角坐标为因此点的极坐标为

(II)设直线的参数方程为为参数),代入曲线的直角坐标方程并整理得设点对应的参数分别为

时,有最小值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某食品的保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=ekx+b(e=2.718…为自然对数的底数,k、b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是小时.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3﹣12x.
(1)求f′(1)的值;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市出租车收费标准如下:①起步价3km(含3km)为10元;②超过3km以外的路程按2元/km收费;③不足1km按1km计费.
(1)试写出收费y元与x(km)(0<x≤5)之间的函数关系式;
(2)若某人乘出租车花了24元钱,求此人乘车里程xkm的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|a≤x≤a+4},B={x|x>1 或x<﹣6}.
(1)若A∩B=,求a的取值范围;
(2)若A∪B=B,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 ,焦点 为坐标原点,直线(不垂直轴)过点且与抛物线交于两点,直线的斜率之积为.

(1)求抛物线的方程;

(2)若为线段的中点,射线交抛物线于点,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知复数z的实部和虚部都是整数,
(1)若复数z为纯虚数,且|z﹣1|=|﹣1+i|,求复数z;
(2)若复数z满足z+ 是实数,且1<z+ ≤6,求复数z.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解答
(1)用反证法证明:已知实数a,b,c满足a+b+c=1,求证:a、b、c中至少有一个数不大于
(2)用分析法证明: + >2 +

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)试讨论函数的单调性;

2)若不等式在区间上恒成立,的取值范围,并证明:

.

查看答案和解析>>

同步练习册答案