精英家教网 > 高中数学 > 题目详情
已知抛物线L的方程为x2=2py(p>0),直线y=x截抛物线L所得弦
(1)求p的值;
(2)抛物线L上是否存在异于点A、B的点C,使得经过A、B、C三点的圆和抛物线L在点C处有相同的切线.若存在,求出点C的坐标;若不存在,请说明理由.
【答案】分析:(1)把直线方程与抛物线方程联立,求出A与B的坐标,再代入弦长即可求p的值;
(2)设出点C的坐标以及圆的圆心N,利用A、B、C三点在圆上,得出圆心坐标N和点C的坐标之间的关系式;再利用抛物线L在点C处的切线与NC垂直,代入即可求点C的坐标.
解答:解:(1)由解得A(0,0),B(2p,2p)

∴p=2
(2)由(1)得x2=4y,A(0,0),B(4,4)
假设抛物线L上存在异于点A、B的点C,使得经过A、B、C三点的圆和抛物线L在点C处有相同的切线
令圆的圆心为N(a,b),
则由

∵抛物线L在点C处的切线斜率
又该切线与NC垂直,


∵t≠0,t≠4,
∴t=-2
故存在点C且坐标为(-2,1).
点评:本题主要考查直线上两点的斜率公式、直线与圆相切、垂径定理、抛物线与圆的几何性质等知识,考查学生的基本思想与运算能力、探究能力和推理能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线L的方程为x2=2py(p>0),直线y=x截抛物线L所得弦|AB|=4
2

(1)求p的值;
(2)抛物线L上是否存在异于点A、B的点C,使得经过A、B、C三点的圆和抛物线L在点C处有相同的切线.若存在,求出点C的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线L的方程为x2=2py(p>0),直线y=x截抛物线L所得弦长为
2

(Ⅰ)求p的值;
(Ⅱ)若直角三角形ABC的三个顶点在抛物线L上,且直角顶点B的横坐标为1,过点A、C分别作抛物线L的切线,两切线相交于点D,直线AC与y轴交于点E,当直线BC的斜率在[3,4]上变化时,直线DE斜率是否存在最大值,若存在,求其最大值和直线BC的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:期末题 题型:解答题

已知抛物线L的方程为x2=2py(p>0),直线y=x截抛物线L所得弦
(1)求p的值;
(2)抛物线L上是否存在异于点A、B的点C,使得经过A、B、C三点的圆和抛物线L在点C处有相同的切线.若存在,求出点C的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线L的方程为,直线截抛物线L所得弦长为

(Ⅰ)求p的值;

(Ⅱ)若直角三角形的三个顶点在抛物线L上,且直角顶点的横坐标为1,过点分别作抛物线L的切线,两切线相交于点,直线轴交于点,当直线的斜率在上变化时,直线斜率是否存在最大值,若存在,求其最大值和直线的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案