【题目】在平面直角坐标系中,椭圆的左、右焦点分别为、,为椭圆短轴端点,若为直角三角形且周长为.
(1)求椭圆的方程;
(2)若直线与椭圆交于两点,直线,斜率的乘积为,求的取值范围.
科目:高中数学 来源: 题型:
【题目】设函数,().
(1)若曲线在点处的切线方程为,求实数a、m的值;
(2)若对任意恒成立,求实数a的取值范围;
(3)关于x的方程能否有三个不同的实根?证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线Γ:y2=2px(p>0)的焦点为F,P是抛物线Γ上一点,且在第一象限,满足(2,2)
(1)求抛物线Γ的方程;
(2)已知经过点A(3,﹣2)的直线交抛物线Γ于M,N两点,经过定点B(3,﹣6)和M的直线与抛物线Γ交于另一点L,问直线NL是否恒过定点,如果过定点,求出该定点,否则说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:()的左,右焦点为,,且焦距为,点,分别为椭圆C的上、下顶点,满足.
(1)求椭圆C的方程;
(2)已知点,椭圆C上的两个动点M,N满足,求证:直线过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若函数在上是减函数,求实数的取值范围;
(2)令,是否存在实数,使得当时,函数的最小值是3?若存在,求出实数的值;若不存在,说明理由;
(3)当时,证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线的参数方程为(为参数).以直角坐标系的原点为极点,轴的正半轴为极轴建立坐标系,曲线的极坐标方程为.
(1)求的普通方程和的直角坐标方程;
(2)若过点的直线与交于,两点,与交于,两点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙三人在政治、历史、地理、物理、化学、生物、技术7门学科中任选3门.若同学甲必选物理,则下列说法正确的是( )
A.甲、乙、丙三人至少一人选化学与全选化学是对立事件
B.甲的不同的选法种数为15
C.已知乙同学选了物理,乙同学选技术的概率是
D.乙、丙两名同学都选物理的概率是
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了响应国家号召,促进垃圾分类,某校组织了高三年级学生参与了“垃圾分类,从我做起”的知识问卷作答随机抽出男女各20名同学的问卷进行打分,作出如图所示的茎叶图,成绩大于70分的为“合格”.
(Ⅰ)由以上数据绘制成2×2联表,是否有95%以上的把握认为“性别”与“问卷结果”有关?
男 | 女 | 总计 | |
合格 | |||
不合格 | |||
总计 |
(Ⅱ)从上述样本中,成绩在60分以下(不含60分)的男女学生问卷中任意选2个,记来自男生的个数为,求的分布列及数学期望.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com