精英家教网 > 高中数学 > 题目详情

【题目】已知函数表示pq中的较大值,表示pq中的较小值)记的最小值为A的最大值为BA-B

A. 16 B. -16 C. a2-2a-16 D. a2+2a-1

【答案】B

【解析】

在同一坐标系中画出fx)与gx)的图象,由图象及H1x)的定义知H1x)的最小值是fa+2),H2x)的最大值为ga﹣2),进而可得答案.

fx)=gx),

x2﹣2(a+2)x+a2=﹣x2+2(a﹣2)xa2+8,

x2﹣2ax+a2﹣4=0,

解得xa+2xa﹣2.

fx)与gx)的图象如图.

由图象及H1x)的定义知H1x)的最小值是fa+2),

H2x)的最大值为ga﹣2),

ABfa+2)﹣ga﹣2)

=(a+2)2﹣2(a+2)2+a2+(a﹣2)2﹣2(a﹣2)2+a2﹣8=﹣16.

故答案为:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)处的切线方程;

(2)若时,恒成立,求实数的取值范围;

(3)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数满足以下三个条件:①对于任意的,都有;②对于任意的都有③函数的图象关于y轴对称,则下列结论中正确的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1y=cos xC2y=sin (2x+),则下面结论正确的是( )

A. C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2

B. C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2

C. C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2

D. C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C经过点,且圆心C在直线.

1)求C圆的方程;

2)直线l过圆C外一点,且直线l与圆C只有一个公共点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量,函数满足,且在区间上单调,又不等式对一切恒成立.

1)求函数的解析式;

2)若函数在区间的零点为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为 为参数),以坐标原点为极点, 轴正半轴为极轴建立极坐标系,直线的极坐标方程为,若直线与曲线相切;

(1)求曲线的极坐标方程;

(2)在曲线上取两点 与原点构成,且满足,求面积的最大值.

【答案】(1);(2)

【解析】试题分析:(1)利用极坐标与直角坐标的互化公式可得直线的直角坐标方程为

,消去参数可知曲线是圆心为,半径为的圆,由直线与曲线相切,可得: ;则曲线C的方程为, 再次利用极坐标与直角坐标的互化公式可得

可得曲线C的极坐标方程.

(2)由(1)不妨设M(),,(),

由此可求面积的最大值.

试题解析:(1)由题意可知直线的直角坐标方程为

曲线是圆心为,半径为的圆,直线与曲线相切,可得: ;可知曲线C的方程为

所以曲线C的极坐标方程为

.

(2)由(1)不妨设M(),,(),

时,

所以△MON面积的最大值为.

型】解答
束】
23

【题目】已知函数的定义域为

(1)求实数的取值范围;

(2)设实数的最大值,若实数 满足,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,现用一种新配方做试验,生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:

质量指标值

频数

6

26

38

22

8

(1)将答题卡上列出的这些数据的频率分布表填写完整,并补齐频率分布直方图;

(2)估计这种产品质量指标值的平均值(同一组中的数据用该组区间的中点值作代表)与中位数(结果精确到0.1).

质量指标值分组

频数

频率

6

0.06

合计

100

1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆和点.

(1)若点是圆上任意一点,求

(2)过圆 上任意一点 与点的直线,交圆于另一点,连接,求证:.

查看答案和解析>>

同步练习册答案