精英家教网 > 高中数学 > 题目详情

【题目】在四棱锥PABCD中,底面ABCD是矩形,PA⊥平面ABCDPAAD=4,AB=2.BD的中点O为球心,BD为直径的球面交PD于点M.

(1)求证:平面ABM⊥平面PCD

(2)求直线PC与平面ABM所成的角的正切值.

【答案】(1)见解析;(2)2

【解析】

(1)先证明PD⊥平面ABM再证明平面ABM⊥平面PCD.(2) 设平面ABMPC交于点N,连接BNMN,再证明∠PNM就是PC与平面ABM所成的角,再解三角形求得直线PC与平面ABM所成的角的正切值.

(1)证明:依题设,M在以BD为直径的球面上,则BMPD

因为PA⊥平面ABCD,则PAAB,又ABAD所以AB⊥平面PADABPD

因此有PD⊥平面ABM

所以平面ABM⊥平面PCD.

(2)设平面ABMPC交于点N,连接BNMN

因为ABCD,所以AB∥平面PCD,则ABMNCD.

(1)知,PD⊥平面ABM,则MNPN在平面ABM上的射影,

所以∠PNM就是PC与平面ABM所成的角,

且∠PNMPCD,tanPNM=tanPCD=2.

即所求角的正切值为2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,设a,b,c,d>0,且不等于1,y=ax , y=bx , y=cx , y=dx在同一坐标系中的图象如图,则a,b,c,d的大小顺序(  )

A.a<b<c<d
B.a<b<d<c
C.b<a<d<c
D.b<a<c<d

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:x∈R,x2+1>m;命题q:指数函数f(x)=(3﹣m)x是增函数.若“p∧q”为假命题且“p∨q”为真命题,则实数m的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数exf(x)(e≈2.71828…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中所有具有M性质的函数的序号为
①f(x)=2x②f(x)=3x③f(x)=x3④f(x)=x2+2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,椭圆E: =1(a>b>0)的离心率为 ,焦距为2.(14分)
(Ⅰ)求椭圆E的方程.
(Ⅱ)如图,该直线l:y=k1x﹣ 交椭圆E于A,B两点,C是椭圆E上的一点,直线OC的斜率为k2 , 且看k1k2= ,M是线段OC延长线上一点,且|MC|:|AB|=2:3,⊙M的半径为|MC|,OS,OT是⊙M的两条切线,切点分别为S,T,求∠SOT的最大值,并求取得最大值时直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}的前n项和为Sn ,若 ,且S11=143,数列{bn}的前n项和为Tn , 且满足
(1)求数列{an}的通项公式及数列 的前n项和Mn
(2)是否存在非零实数λ,使得数列{bn}为等比数列?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x+asinx在(﹣∞,+∞)上单调递增,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】动点在抛物线上,过点垂直于轴,垂足为,设.

Ⅰ)求点的轨迹的方程;

Ⅱ)设点,过点的直线交轨迹两点,直线的斜率分别为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班级数学兴趣小组为了研究人的脚的大小与身高的关系,随机抽测了20位同学,得到如下数据:

序号

1

2

3

4

5

6

7

8

9

10

身高x(厘米)

192

164

172

177

176

159

171

166

182

166

脚长y(码)

48

38

40

43

44

37

40

39

46

39

序号

11

12

13

14

15

16

17

18

19

20

身高x(厘米)

169

178

167

174

168

179

165

170

162

170

脚长y(码)

43

41

40

43

40

44

38

42

39

41

(Ⅰ)请根据“序号为5的倍数”的几组数据,求出y关于x的线性回归方程
(Ⅱ)若“身高大于175厘米”为“高个”,“身高小于等于175厘米”的为“非高个”;“脚长大于42码”为“大码”,“脚长小于等于42码”的为“非大码”.请根据上表数据完成2×2列联表:并根据列联表中数据说明能有多大的可靠性认为脚的大小与身高之间有关系?
(Ⅲ)若按下面的方法从这20人中抽取1人来核查测量数据的误差:将一个标有1,2,3,4,5,6的正六面体骰子连续投掷两次,记朝上的两个数字的乘积为被抽取人的序号,求:抽到“无效序号(超过20号)”的概率.
附表及公式:

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

K2=

查看答案和解析>>

同步练习册答案