精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系xOy中,已知圆C1的参数方程为 为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线C2的极坐标方程为ρcosθ+2=0.
(1)求C1的极坐标方程与C2的直角坐标方程;
(2)若直线C3的极坐标方程为 ,设C3与C1的交点为M,N,P为C2上的一点,且△PMN的面积等于1,求P点的直角坐标.

【答案】
(1)解:C1的普通方程为(x﹣1)2+(y﹣2)2=1,即x2+y2﹣2x﹣4y+4=0,

因为x=ρcosθ,y=ρsinθ,所以C1的极坐标方程为ρ2﹣2ρcosθ﹣4ρsinθ+4=0,C2的直角坐标方程为x=﹣2;


(2)解:将 代入ρ2﹣2ρcosθ﹣4ρsinθ+4=0,

所以

因为△PMN的面积等于1,所以P点到直线 即x﹣y=0距离为

设P(﹣2,y),则 或﹣4,

P点坐标为(﹣2,0)或(﹣2,﹣4).


【解析】(1)消调参数θ,即可得到普通方程,由极坐标方程即可直接得到普通方程;(2)将 代入ρ2﹣2ρcosθ﹣4ρsinθ+4=0,根据韦达定理,即可求出|MN|的值,根据三角形的面积公式可得P点到直线 距离为 ,设P(﹣2,y),即可求出答案

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数处有极值,求的值;

(2)若对于任意的上单调递增,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,底面ABCD是直角梯形,∠ADC=90°,AD∥BC,AB⊥AC,AB=AC= ,点E在AD上,且AE=2ED.
(Ⅰ)已知点F在BC上,且CF=2FB,求证:平面PEF⊥平面PAC;
(Ⅱ)当二面角A﹣PB﹣E的余弦值为多少时,直线PC与平面PAB所成的角为45°?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列有关结论正确的个数为( ) ①小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件A=“4个人去的景点不相同”,事件B=“小赵独自去一个景点”,则
②设函数f(x)存在导数且满足 ,则曲线y=f(x)在点(2,f(2))处的切线斜率为﹣1;
③设随机变量ξ服从正态分布N(μ,7),若P(ξ<2)=P(ξ>4),则μ与Dξ的值分别为μ=3,Dξ=7.
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中, ,角A的平分线AD交BC于点D,设∠BAD=α,
(Ⅰ)求sinC;
(Ⅱ)若 ,求AC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知Sn是等差数列{an}的前n项和,且s6>s7>s5 , 给出下列五个命题:①d>0;②S11>0;③S12<0;④数列{Sn}中的最大项为S11;⑤|a5|>|a7|.其中正确命题的个数为(
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1 + =1,圆C2:x2+y2=t经过椭圆C1的焦点.
(1)设P为椭圆上任意一点,过点P作圆C2的切线,切点为Q,求△POQ面积的取值范围,其中O为坐标原点;
(2)过点M(﹣1,0)的直线l与曲线C1 , C2自上而下依次交于点A,B,C,D,若|AB|=|CD|,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}前5项和为50,a7=22,数列{bn}的前n项和为Sn , b1=1,bn+1=3Sn+1. (Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)若数列{cn}满足 ,n∈N* , 求c1+c2+…+c2017的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=x|x|.若存在x∈[1,+∞),使得f(x﹣2k)﹣k<0,则k的取值范围是(
A.(2,+∞)
B.(1,+∞)
C.( ,+∞)
D.( ,+∞)

查看答案和解析>>

同步练习册答案