分析 (Ⅰ)设AC∩BD=O,连结EO,证明EO∥PC.即可证明PC∥平面EBD.
(Ⅱ)连结PO,证明PO⊥BD.AC⊥BD.即可证明BD⊥平面PAC.然后说明平面EBD⊥平面PAC.
(Ⅲ)利用VC-ABE=VE-ABC,求解即可.
解答 (本小题14分)
解(Ⅰ)设AC∩BD=O,连结EO,
∵E为PA中点,O为AC中点,
∴EO∥PC.
又∵EO?平面EBD,PC?平面EBD,
∴PC∥平面EBD. …(5分)
(Ⅱ)连结PO,
∵PD=PB,O为BD中点,
∴PO⊥BD.
又∵底面ABCD为菱形,
∴AC⊥BD.
∵PO∩AC=O,
∴BD⊥平面PAC.
又∵BD?平面EBD,
∴平面EBD⊥平面PAC.…(10分)
(Ⅲ)VC-ABE=VE-ABC…(12分)
=$\frac{1}{3}×\frac{1}{2}×AC×OB×\frac{PO}{2}$=$\frac{1}{6}×4\sqrt{3}×2×\sqrt{3}=4$. …(14分)
点评 本题考查直线与平面平行与垂直的判定定理以及性质定理的应用,几何体的体积的求法,转化思想的应用,考查空间想象能力以及计算能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{625}{6}$ | B. | $\frac{250}{6}$ | C. | $\frac{375}{6}$ | D. | $\frac{125}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{4}{5}$ | B. | -$\frac{4}{5}$ | C. | $\frac{7}{2}$ | D. | -$\frac{7}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com