精英家教网 > 高中数学 > 题目详情
8.解不等式:x2-x+a-a2<0.

分析 原不等式等价转化为[x+(a-1)](x-a)<0,由a的取值范围分类讨论,由此能求出原不等式的解集.

解答 解:∵x2-x+a-a2<0,
∴x2-x-a(a-1)<0,
∴[x+(a-1)](x-a)<0
∴当-(a-1)>a时,即a<$\frac{1}{2}$时,
不等式:x2-x+a-a2<0的解集是{x|a<x<1-a};
当-(a-1)=a时,即a=$\frac{1}{2}$,
(x-$\frac{1}{2}$)2<0不存在,
不等式:x2-x+a-a2<0的解集是∅;
当-(a-1)<a时,即a>$\frac{1}{2}$时,
不等式:x2-x+a-a2<0的解集是{x|1-a<x<a}.

点评 本题考查含参一元二次不等式的解法,是中档题,解题时要认真审题,注意分类讨论思想的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.如图,在复平面内,复数z1和z2对应的点分别是A和B,则$\frac{{z}_{2}}{{z}_{1}}$=(  )
A.$\frac{1}{5}$+$\frac{2}{5}$iB.$\frac{2}{5}$+$\frac{1}{5}$iC.-$\frac{1}{5}$-$\frac{2}{5}$iD.-$\frac{2}{5}$-$\frac{1}{5}$i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=Asin(ωx+φ)(ω>0,-π<φ<0)的部分图象如图所示,则下列判断错误的是(  )
A.函数f(x)的最小正周期为2
B.函数f(x)的值域为[一4,4]
C.函数f(x)的图象关于( $\frac{10}{3}$,0)对称
D.函数f(x)的图象向左平移 $\frac{π}{3}$个单位后得到y=Asinωx的图象

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.用导数的定义,求函数y=$\frac{1}{{x}^{2}}$+2在x=1处的导数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)=$\sqrt{3}$sin2x-cos2x.
(1)求函数f(x)的单调递增区间;
(2)若f(θ)=$\frac{6}{5}$,θ∈[0,$\frac{π}{4}$],求cos2θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若点P(2,4)为抛物线y2=2px上一点,则抛物线焦点坐标为(2,0)若双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)经过点P,且与抛物线共焦点,则双物线的渐近线方程为y=$±\sqrt{2}x$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列各对向量中,共线的是(  )
A.$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(3,-2)B.$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(4,-6)C.$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow{b}$=($\sqrt{3}$,3)D.$\overrightarrow{a}$=(4,7),$\overrightarrow{b}$=(7,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.零向量的方向规定为(  )
A.向左B.向右C.坐标轴方向D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设点P在曲线y=2ex上,点Q在曲线y=lnx-ln2上,则|PQ|的最小值为(  )
A.1-ln2B.$\sqrt{2}$(1-ln2)C.2(1+ln2)D.$\sqrt{2}$(1+ln2)

查看答案和解析>>

同步练习册答案