精英家教网 > 高中数学 > 题目详情
如图,在三棱柱ABC-A1B1C1中,点D为AC的中点,点D1是A1C1上的一点,若BC1∥平面AB1D1,则
A1D1
D1C1
等于(  )
分析:利用线面、面面平行的判定定理和性质定理、反证法即可得出.
解答:解:若BC1∥平面AB1D1,则
A1D1
D1C1
=1.如图所示:
①当D1点满足
A1D1
D1C1
=1时,由平行四边形ADC1D1可得DC1∥AD1,∵DC1?平面AB1D1,AD1?平面AB1D1,∴DC1∥平面AB1D1
同理DB∥平面AB1D1,又∵DB∩DC1=D,∴平面BDC1∥平面AB1D1.可得BC1∥平面AB1D1,满足已知条件.
②假设点D1不是线段A1C1的中点而满足已知条件BC1∥平面AB1D1,则可取线段A1C1的中点E,由(1)可知:平面BC1D∥平面AB1E,
∴平面AB1D1∥平面AB1E,这与平面AB1D1∩平面AB1E相矛盾,因此假设不成立,故点D1是线段A1C1的中点.
故选B.
点评:熟练掌握线面、面面平行的判定定理和性质定理、反证法是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在三棱柱ABC-A'B'C'中,若E、F分别为AB、AC的中点,平面EB'C'F将三棱柱分成体积为V1、V2的两部分,那么V1:V2为(  )
A、3:2B、7:5C、8:5D、9:5

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,A1A=AC=2,BC=1,AB=
5
,则此三棱柱的侧视图的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,四边形A1ABB1为菱形,∠A1AB=60°,四边形BCC1B1为矩形,若AB⊥BC且AB=4,BC=3
(1)求证:平面A1CB⊥平面ACB1
(2)求三棱柱ABC-A1B1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•通州区一模)如图,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=BC=2,AB=2
2
,CC1=4,M是棱CC1上一点.
(Ⅰ)求证:BC⊥AM;
(Ⅱ)若N是AB上一点,且
AN
AB
=
CM
CC1
,求证:CN∥平面AB1M;
(Ⅲ)若CM=
5
2
,求二面角A-MB1-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱柱ABC-A1B1C1中,AA1⊥面ABC,AC⊥BC,E分别在线段B1C1上,B1E=3EC1,AC=BC=CC1=4.
(1)求证:BC⊥AC1
(2)试探究:在AC上是否存在点F,满足EF∥平面A1ABB1,若存在,请指出点F的位置,并给出证明;若不存在,说明理由.

查看答案和解析>>

同步练习册答案