精英家教网 > 高中数学 > 题目详情

【题目】已知函数fx=x2ax3a0),xR.若对任意的x1∈(2+∞),都存在x2∈(1+∞),使得fx1fx2=1,则a的取值范围是_____.

【答案】

【解析】

=2ax2+2x,令=0,得,根据对任意的x1∈(2+∞),都存在x2∈(1+∞),使得fx1fx2=1,分

三种情况讨论fx1),fx2)的值域即可.

因为=2ax2+2x

=0

①:当,即a≥1时,0,在x[1+∞)恒成立,所以fx)在[1+∞)递减,

若对任意的x1∈(2+∞),都存在x2∈(1+∞),使得fx1fx2=1

所以fx1)的值域为(),fx2)的值域为(),

fx1fx2=1得:.

显然,当fx1时,→0(负数),故要满足结论,首先需满足:

,解得.

所以.

②当,即时,fx1)在(2+∞)上递减,故此时fx1

fx2)在(1)递增,在递减,故0.

此时只需即可,解得.

③当,即时,fx1),fx2)的最大值都是0,所以能取到所有正实数,

,故此时不满足题意.

综上,a的取值范围是[].

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中

1)若函数上是增函数,求的取值范围.

2)若存在,使得关于的方程有三个不相同的实数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某学校拟建一块五边形区域的“读书角”,三角形区域ABE为书籍摆放区,沿着ABAE处摆放折线形书架(书架宽度不计),四边形区域为BCDE为阅读区,若∠BAE=60°,∠BCD=∠CDE=120°,DE=3BC=3CDm

(1)求两区域边界BE的长度;

(2)若区域ABE为锐角三角形,求书架总长度AB+AE的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知对某校的100名学生进行不记名问卷调查,内容为一周的课外阅读时长和性别等进行统计,如表:

1)课外阅读时长在20以下的女生按分层抽样的方式随机抽取7人,再从7人中随机抽取2人,求这2人课外阅读时长不低于15的概率;

2)将课外阅读时长为25以上的学生视为“阅读爱好”者,25以下的学生视为“非阅读爱好”者,根据以上数据完成2×2列联表:

非阅读爱好者

阅读爱好者

总计

女生

男生

总计

能否在犯错概率不超过0.01的前提下,认为学生的“阅读爱好”与性别有关系?

附:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数).M是曲线上的动点,将线段OM绕O点顺时针旋转得到线段ON,设点N的轨迹为曲线.以坐标原点O为极点,轴正半轴为极轴建立极坐标系.

(1)求曲线的极坐标方程;

(2)在(1)的条件下,若射线与曲线分别交于A, B两点(除极点外),且有定点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的三个内角A,B,C对应的边长分别为a,b,c,向量m=(sinB,1﹣cosB)与向量n=(2,0)的夹角θ的余弦值为

(1)求角B的大小;

(2)若b=,求a+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,x∈(b﹣3,2b)是奇函数,

(1)求a,b的值;

(2)若f(x)是区间(b﹣3,2b)上的减函数且f(m﹣1)+f(2m+1)>0,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本(万元)与年产量(吨)之间的函数关系式可以近似的表示为,已知此生产线年产量最大为吨.

1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;

2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】体育测试成绩分为四个等级:优、良、中、不及格.某班50名学生参加测试结果如下:

等级

优(86100分)

良(7585分)

中(6074分)

不及格(159分)

人数

5

21

22

2

1)估计该班学生体育测试的平均成绩;

2)从该班任意抽取1名学生,求这名学生的测试成绩为“优”或“良”的概率.

查看答案和解析>>

同步练习册答案