精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ex+x2-x.(e=2.71828…为自然对数的底数)
(Ⅰ)求证:函数f(x)在(0,+∞)上单调递增;
(Ⅱ)若函数y=|f(x)-t|-1有三个零点,求t的值;
(Ⅲ)记λ(n)=
1
2
+
1
3
+
1
4
+…+
1
n
,求证:e+
e
+
3e
+…+
ne
>n+
1
n
+λ(n)
(n≥2,n∈N*).
分析:(Ⅰ)可得f′(x)=ex+2x-1>0,可得f(x)在(0,+∞)上单调递增;
(Ⅱ)问题等价于|f(x)-t|=1,f(x)=t±1有三个零点;只需[f(x)]min=t-1,可得最小值f(0)=t-1,进而可得t值;
(Ⅲ)由(Ⅱ)知:f(x)在(0,+∞)上单调递增;可得ex>1-x2+x,进而可得当n≥2,n∈N*时,e
1
n
>1-
1
n2
+
1
n
>1-
1
n(n-1)
+
1
n
=1-(
1
n-1
-
1
n
)+
1
n
,叠加得:e+
e
+
3e
+…+
ne
>n+
1
n
+λ(n)
解答:解:(Ⅰ)可得f′(x)=ex+2x-1,
∵x>0,∴f′(x)>0
所以f(x)在(0,+∞)上单调递增.…(4分)
(Ⅱ) y=|f(x)-t|-1有三个零点,即|f(x)-t|=1,f(x)=t±1有三个零点;
由f′(x)=ex+2x-1=0得:x=0
当x<0时,f'(x)<0,得:f(x)在(-∞,0)上单调递减;
当x>0时,f'(x)>0,得:f(x)在(0,+∞)上单调递增;
所以,只需[f(x)]min=t-1,即f(0)=t-1,∴t=2.…(10分)
(Ⅲ)由(Ⅱ)知:f(x)在(0,+∞)上单调递增;
f(x)>f(0)∴ex+x2-x>1,∴ex>1-x2+x
当n≥2,n∈N*时,e
1
n
>1-
1
n2
+
1
n
>1-
1
n(n-1)
+
1
n
=1-(
1
n-1
-
1
n
)+
1
n
,又e>2
叠加得:e+
e
+
3e
+…+
ne
>n+
1
n
+λ(n)

∴当n≥2,n∈N*时,e+
e
+
3e
+…+
ne
>n+
1
n
+λ(n)
成立.…(15分)
点评:本题考查利用导数研究函数的单调性,涉及不等式证明的放缩法,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=e-x(cosx+sinx),将满足f′(x)=0的所有正数x从小到大排成数列{xn}.求证:数列{f(xn)}为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•西城区二模)已知函数f(x)=e|x|+|x|.若关于x的方程f(x)=k有两个不同的实根,则实数k的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•菏泽一模)已知函数f(x)=e|lnx|-|x-
1
x
|,则函数y=f(x+1)的大致图象为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=e-xsinx(其中e=2.718…).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)求f(x)在[-π,+∞)上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=e-x(x2+x+1).
(Ⅰ)求函数f(x)的单调递减区间;
(Ⅱ)求函数f(x)在[-1,1]上的最值.

查看答案和解析>>

同步练习册答案