【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,圆经过伸缩变换后得到曲线,相互垂直的直线过定点与曲线相交于两点, 与曲线相交于两点.
(1)求曲线的直角坐标方程;
(2)求的最小值.
科目:高中数学 来源: 题型:
【题目】以直角坐标系的原点为极点,以轴的正半轴为极轴,且两个坐标系取相等的长度单位,已知直线的参数方程为(为参数,),曲线的极坐标方程为.
(1)若,求直线的普通方程和曲线的直角坐标方程;
(2)设直线与曲线相交于,两点,当变化时,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一台机器使用的时间较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器运转速度而变化,下表为抽样试验的结果:
转速x(转/秒) | 16 | 14 | 12 | 8 |
每小时生产有缺点的零件数y(件) | 11 | 9 | 8 | 5 |
(1)利用散点图或相关系数r的大小判断变量y对x是否线性相关?为什么?
(2)如果y与x有线性相关关系,求回归直线方程;
(3)若实际生产中,允许每小时的产品中有缺点的零件最多为10个,那么机器的运转速度应控制在什么范围内?
(最后结果精确到0.001.参考数据:,
,)
回归分析有关公式:r=,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.80元,当用水超过4吨时,超过部分每吨3.00元,某月甲、乙两户共交水费y元,已知甲、乙两户该月用水量分别为5x吨、3x吨.
(1)求y关于x的函数;
(2)若甲、乙两户该月共交水费26.4元,分别求出甲、乙两户该月的用水量和水费.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】张军在网上经营了一家干果店,销售的干果中有松子、开心果、腰果、核桃,价格依次为120元/千克、80元/千克、70元/千克、40元/千克.为了增加销量,张军对以上四种干果进行促销,若一次性购买干果的总价达到150元,顾客就少付x(x∈Z)元,每笔订单顾客在网上支付成功后,张军会得到支付款的80%.
①当x=15时,顾客一次性购买松子和腰果各1千克,需要支付_________________元;
②在促销活动中,为保证张军每笔订单得到的金额均不低于促销的总价的70%,则x的最大值为___________
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com