精英家教网 > 高中数学 > 题目详情
3.把下列极坐标方程化成直角坐标方程:
 (1)ρ=4sin2θ;
 (2)ρ=-4sinθ+cosθ;
 (3)ρcos(θ-$\frac{π}{6}$)=1.

分析 利用$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$即可把极坐标方程化为直角坐标方程.

解答 解:(1)ρ=4sin2θ,化为ρ3=4ρ2sin2θ,∴直角坐标方程为:$({x}^{2}+{y}^{2})^{\frac{3}{2}}$=4y2,即(x2+y23=16y4
(2)由ρ=-4sinθ+cosθ化为ρ2=-4ρsinθ+ρcosθ,∴直角坐标方程为:x2+y2=-4y+x;
(3)由ρcos(θ-$\frac{π}{6}$)=1展开化为$\frac{\sqrt{3}}{2}ρcosθ+\frac{1}{2}ρsinθ$=1,∴直角坐标方程为:$\sqrt{3}x+y=2$.

点评 本题考查了极坐标方程化为直角坐标方程的方法,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.求过三点A(1,2),B(-2,0),C(-1,-1)的圆的方程,并求出这个圆的半径和圆心的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x2+bx+c(b、c∈R)对于任意x∈R恒有2x+b≤f(x)成立.
(1)证明:当x≥0时,f(x)≤(x+c)2
(2)若对于满足题设要求的任意b、c,不等式f(c)-f(b)≤M(c2-b2)恒成立,求M的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知an=n•22n-2,求{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.定义在(-1,1)上的奇函数f(x)是减函数,且f(a-2)+f(4-a2)<0成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在等差数列{an}中,已知公差d=1,且a1+a3+…+a97+a99=60,则a1+a2+…+a99+a100=170.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.利用函数单调性的定义证明函数f(x)=$\frac{3x+1}{x-1}$在(2,+∞) 上是单调减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.定义在(0,∞)上的函数f(x),对于任意的x,y∈(0,+∞).都有f(xy)=f(x)+f(y)成立,当x>1时,f(x)>0.
(1)计算f(1);
(2)判断函数f(x)在(0,∞)上的单调性;
(3)若f(2)=1,解不等式3-f(x+2)>f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数y=$\frac{2{x}^{2}-x+2}{{x}^{2}+x+1}$,x∈[1,5],则函数的值域是[1,$\frac{47}{31}$].

查看答案和解析>>

同步练习册答案