精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2+(a+1)x+4,(a∈R).命题P:函数f(x)在区间[1,+∞)上是增函数;命题Q:对任意的x∈R,f(x)>0恒成立;若P或Q为真,P且Q为假,求实数a的取值范围.
分析:根据二次函数的图象和性质,我们可以求出命题P:函数f(x)在区间[1,+∞)上是增函数为真命题时,实数a的取值范围,根据二次函数恒成立的充要条件,我们可以求出命题Q:对任意的x∈R,f(x)>0恒成立为真命题时,实数a的取值范围,进而根据P或Q为真,P且Q为假,我们可得命题P和命题Q中必然一真一假,分类讨论后,综合讨论结果即可得到答案.
解答:解:∵函数f(x)=x2+(a+1)x+4
若命题P:函数f(x)在区间[1,+∞)上是增函数为真命题
则-
a+1
2
≤1,即a≥-3
若命题Q:对任意的x∈R,f(x)>0恒成立为真命题
则△=(a+1)2-16<0,即-5<a<3
若P或Q为真,P且Q为假,则命题P和命题Q中必然一真一假
当P为真,Q为假时a≥3
当P为假,Q为真时-5<a<-3
综上满足条件的实数a的取值范围为:(-5,-3)∪[3,+∞)
点评:本题考查的知识点是二次函数的图象和性质,命题的真假判断与应用,其中熟练掌握二次函数的图象和性质,并由此判断出命题P和命题Q成立时,实数a的取值范围是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案