精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥P﹣ABCD的底面ABCD为直角梯形,AD‖BC,且 ,BC⊥DC,∠BAD=60°,平面PAD⊥底面ABCD,E为AD的中点,△PAD为等边三角形,M是棱PC上的一点,设 (M与C不重合).

(1)求证:CD⊥DP;
(2)若PA∥平面BME,求k的值;
(3)若二面角M﹣BE﹣A的平面角为150°,求k的值.

【答案】
(1)证明:因为△PAD为等边三角形,E为AD的中点,所以PE⊥AD.

因为平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,PE平面PAD,

所以PE⊥平面ABCD.

又CD平面ABCD,所以PE⊥CD.

由已知得CD⊥DA,PE∩AD=E,所以CD⊥平面PAD.

双DP平面PAD,所以CD⊥DP.


(2)解:连接AC交BE于N,连接MN.

因为PA∥平面BME,PA平面PAC,

平面PAC∩平面BME=MN,所以PA∥MN.

因为 AD∥BC,BC⊥DC,所以∠CBN=∠AEN=90°.

又CB=AE,∠CNB=∠ANE,所以△CNB≌△ANE.

所以CN=NA,则M为PC的中点,k=1.


(3)解:方法一:

依题意,若二面角M﹣BE﹣A的大小为150°,则二面角M﹣BE﹣C的大小为30°.

连接CE,过点M作MF∥PE交CE于F,过A(0,1,0)作FG⊥BE于G,连接MG.

因为PE⊥平面ABCD,所以MF⊥平面ABCD.

又BE平面ABCD,所以MF⊥BE.

又MF∩FG=F,MF平面MFG,FG平面MFG,

所以BE⊥平面MFG,从而BE⊥MG.

则∠MGF为二面角M﹣BE﹣C的平面角,即∠MGF=30°.

在等边△PAD中, .由于 ,所以

,所以

在△MFG中,

解得k=3.

方法二:由于EP⊥EA,EP⊥EB,EA⊥EB,以E为原点,

射线EB,EA,EP分别为x正半轴,y正半轴,z正半轴建立空间直角坐标系,

如图.∵ ,∠BAD=60°,

∴A(0,1,0), ,D(0,﹣1,0),E(0,0,0),

平面ABE即xoy平面的一个法向量为 =(0,0,1).

设M(x,y,z),由条件 可知: (k>0),

,解得:

设平面MBE的一个法向量为 =(x',y',z'),

,x'=0,令 ,则z'=k.即 =(0, ).

因为二面角M﹣BE﹣A的平面角为150°,

所以|cos< >|=|cos150°|,即 = =

解得k=±3.

因为k>0,所以k=3.


【解析】(1)推导出PE⊥AD,从而PE⊥平面ABCD,进而PE⊥CD,再由CD⊥DA,得CD⊥平面PAD,由此能证明CD⊥DP.(2)连接AC交BE于N,连接MN,推导出PA∥MN,从而∠CBN=∠AEN=90°,进而△CNB≌△ANE.由此能求出k=1.(3)法一:连接CE,过点M作MF∥PE交CE于F,过A(0,1,0)作FG⊥BE于G,连接MG,则∠MGF为二面角M﹣BE﹣C的平面角,由此能示出k.
法二:以E为原点,射线EB,EA,EP分别为x正半轴,y正半轴,z正半轴建立空间直角坐标系,利用和量法能求出k.
【考点精析】认真审题,首先需要了解直线与平面平行的判定(平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 sin(π﹣2x)
(1)若 ,求f(x)的取值范围;
(2)求函数 f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业接到生产3000台某产品的A,B,C三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件).已知每个工人每天可生产A部件6件,或B部件3件,或C部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B部件的人数与生产A部件的人数成正比,比例系数为K(K为正整数).
(1)设生产A部件的人数为x,分别写出完成A,B,C三种部件生产需要的时间;
(2)假设这三种部件的生产同时开工,试确定正整数K的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在几何体ABCDE中,BE⊥平面ABC,CD∥BE,△ABC是等腰直角三角形,∠ABC=90°,且BE=AB=4,CD=2,点F在线段AC上,且AF=3FC

(1)求异面直线DF与AE所成角;
(2)求平面ABC与平面ADE所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图为四棱锥P﹣ABCD的表面展开图,四边形ABCD为矩形, ,AD=1.已知顶点P在底面ABCD上的射影为点A,四棱锥的高为 ,则在四棱锥P﹣ABCD中,PC与平面ABCD所成角的正切值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)的图象如图所示,曲线BCD为抛物线的一部分.
(Ⅰ)求f(x)解析式;
(Ⅱ)若f(x)=1,求x的值;
(Ⅲ)若f(x)>f(2﹣x),求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,底面ABCD为直角梯形,AD∥BC,∠BAD=90°,PA=AD=AB=2BC=2,过AD的平面分别交PB,PC于M,N两点.

(1)求证:MN∥BC;
(2)若M,N分别为PB,PC的中点,
①求证:PB⊥DN;
②求二面角P﹣DN﹣A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】长方体ABCD﹣A1B1C1D1中,AA1=2,BC= ,E为CC1的中点.

(1)求证:平面A1BE⊥平面B1CD;
(2)平面A1BE与底面A1B1C1D1所成的锐二面角的大小为θ,当 时,求θ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,则输出的i值为(
A.4
B.5
C.6
D.7

查看答案和解析>>

同步练习册答案