精英家教网 > 高中数学 > 题目详情
抛物线C:y2=4x的焦点为F,A,B是C上的两点,且AF⊥FB,弦AB中点M在C的准线上的射影为M′,则
|AB|
|MM′|
的最小值为(  )
A、
3
B、
2
2
C、
2
D、
3
2
考点:抛物线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:设|AF|=a、|BF|=b,由抛物线定义结合梯形的中位线定理,得2|MN|=a+b.再由勾股定理得|AB|2=a2+b2,结合基本不等式求得|AB|的范围,从而可得
|AB|
|MM′|
的最小值.
解答: 解:设|AF|=a,|BF|=b,A、B在准线上的射影点分别为Q、P,连接AQ、BQ  
由抛物线定义,得AF|=|AQ|且|BF|=|BP|
在梯形ABPQ中根据中位线定理,得2|MM′|=|AQ|+|BP|=a+b.
由勾股定理得|AB|2=a2+b2,配方得|AB|2=(a+b)2-2ab,
又∵ab≤(
a+b
2
) 2
∴(a+b)2-2ab≥(a+b)2-2×(
a+b
2
2=
1
2
(a+b)2
得到|AB|≥
2
2
(a+b).
所以
|AB|
|MM′|
2
2
(a+b)
1
2
(a+b)
=
2
,即
|AB|
|MM′|
的最小值为
2

故选C
点评:本题给出抛物线的弦AB对焦点F所张的角为直角,求AB中点M到准线的距离与AB比值的取值范围,着重考查了抛物线的定义与简单几何性质、梯形的中位线定理和基本不等式求最值等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P是抛物线y2=8x上的一个动点,则点P到该抛物线的焦点与准线的距离之和的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂某种产品的年固定成本为250万元,每生产x千件需另投入成本为G(x),当年产量不足80千克时,
G(x)=
1
3
x2+10x(万元).当年产量不小于80千件时,G(x)=51x+
10000
x
-1450(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.则该厂在这一商品的生产中所获年利润的最大值是(  )
A、900万元
B、950万元
C、1000万元
D、1150万元

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线的顶点坐标为原点,对称轴为x轴,且与圆x2+y2=16相交的公共弦长等于4
3
,则这个抛物线的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=2px(p>0),直线交此抛物线于不同的两个点A(x1,y1)、B(x2,y2
(1)当直线过点M(p,0)时,证明y1.y2为定值;
(2)如果直线过点M(p,0),过点M再作一条与直线垂直的直线l′交抛物线C于两个不同点D、E.设线段AB的中点为P,线段DE的中点为Q,记线段PQ的中点为N.问是否存在一条直线和一个定点,使得点N到它们的距离相等?若存在,求出这条直线和这个定点;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b均为正数,则函数f(x)=(a2+b2)x+ab的零点的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x2-2x零点个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

在空间坐标系O-xyz之中,M(0,1,2),N(-1,2,1),则|MN|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是底面半径为1,母线长均为2的圆锥和圆柱的组合体,则该组合体的侧视图的面积为(  )
A、8π
B、6π
C、2+
3
D、4+
3

查看答案和解析>>

同步练习册答案