精英家教网 > 高中数学 > 题目详情
已知点集L={(x,y)|y=},其中=(2x-b,1),=(1,b+1),点列Pn(an,bn)(n∈N+)在L中,p1为L与y轴的交点,数列{an}是公差为1的等差数列.
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)若f(n)=,令Sn=f(1)+f(2)+f(3)+…+f(n),试写出Sn关于n的表达式;
(Ⅲ)若f(n)=,给定奇数m(m为常数,m∈N+,m>2).是否存在k∈N+,,使得
f(k+m)=2f(m),若存在,求出k的值;若不存在,请说明理由.
【答案】分析:(I)首先运用向量数量积的运算得 =(2x-b)+(b+1)=2x+1,然后再根据等差通项公式得an=a1+(n-1)×1=n-1,最后在根据bn=2an+1,得bn=2n-1
(Ⅱ)此小问关键在于分类讨论(1)当n=2k时(2)当n=2k-1时,然后根据等差数列的求和公式即可;
(Ⅲ)先假设存在k∈N+,使得f(m+k)=2f(m),因为m为奇数;再分k为奇数和k为偶数两种情况分别求出对应的k的值即可.
解答:解(Ⅰ)y==(2x-b)+(b+1)=2x+1
∵y=2x+1与y轴的交点P1(a1,b1)为(0,1)
∴a1=0;
∵等差数列{an}的公差为1
∴an=a1+(n-1)×1,即an=n-1,
因为Pn(an,bn)在y=2x+1上,所以bn=2an+1,即bn=2n-1
(Ⅱ)由题意得:
f(n)=
①当n=2k时,sn=s2k=a1+b2+a2+b4+…+a2k-1+b2k
=(a1+a2+…+a2k-1)+(b2+b4+…+b2k
=k+k=3k2
因为k=.所以
②当n=2k-1时,Sn=S2k-1=S2k-2+f(2k-1)
=3(k-1)2+2k-2=3k2-4k+1.
因为k=.所以Sn=
因此Sn=
(Ⅲ)假设存在k∈N+,使得f(m+k)=2f(m),因为m为奇数,
(1)若k为奇数,则k+m为偶数,于是f(m)=m-1,f(m+k)=2(m+k)-1,
由2(m+k)-1=2(m-1),得k=-与k∈N+矛盾;(11分)
(2)若k为偶数,则k+m为奇数,于是f(m)=m-1,f(m+k)=(m+k)-1,
由(m+k)-1=2(m-1),得k=m-1(m-1是正偶数).(13分)
综上,对于给定奇数m(m为常数,m∈N+,m>2),这样的k总存在且k=m-1.(14分)
点评:本题是对数列知识与函数知识的综合考查.在本题的第二问和第三问均用到了分类讨论思想,分类讨论的熟练应用是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点集L={(x,y)|y=
m
n
}
,其中
m
=(2x-1,1),
n
=(1,2)
,点列Pn(an,bn)在L中,P1为L与y轴的公共点,等差数列{an}的公差为1.
(I)求数列{an},{bn}的通项公式;
(Ⅱ)若cn=
5
n|
P1Pn
|
(n≥2),c1=1
,数列{cn}的前n项和Sn满足M+n2Sn≥6n对任意的n∈N*都成立,试求M的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点集L={(x,y)|y=
m
n
}
,其中
m
=(2x-b,1),
n
=(1,1+b)
,又知点列Pn(an,bn)∈L,P1为L与y轴的交点.等差数列{an}的公差为1,n∈N*
(Ⅰ)求Pn(an,bn);
(Ⅱ)若f(n)=
an,n=2k-1
bn,n=2k
k∈N*,f(k+11)=2f(k)
,求出k的值;
(Ⅲ)对于数列{bn},设Sn是其前n项和,是否存在一个与n无关的常数M,使
Sn
S2n
=M
,若存在,求出此常数M,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点集L={(x,y)|y=
m
n
}
,其中
m
=(2x-b,1),
n
=(1,b+1)
,点列Pn(an,bn)在L中,P1为L与y轴的交点,等差数列{an}的公差为1,n∈N+
(1)求数列{an},{bn}的通项公式;
(2)若cn=
5
n•|P1Pn|
(n≥2)
,求
lim
n→∞
(c1+c2+…+cn)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点集L={(x,y)|y=
m
n
}
,其中
m
=(2x-b,1),
n
=(1,b+1)
,点列Pn(an,bn)在L中,P1为L与y轴的交点,等差数列{an}的公差为1,n∈N+
(1)求数列{an},{bn}的通项公式;
(2)若f(n)=
an(n=2k-1)
bn(n=2k)
(k∈N+)
,是否存在k∈N+使得f(k+11)=2f(k),若存在,求出k的值;若不存在,请说明理由.
(3)求证:
1
|P1P2|2
+
1
|P1P3|2
+…+
1
|P1Pn|2
2
5
(n≥2,n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(理) 已知点集L={(x,y)|y=
m
n
}
,其中
m
=(x-2b,2)
n
=(1,b+1)
,点Pn(an,bn)∈L,P1=L∩{(x,y)|x=1},且an+1-an=1,则数列{bn}的通项公式为
 

查看答案和解析>>

同步练习册答案