精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线x2=2py(p>0)与直线2x﹣y+1=0交于A,B两点, ,点M在抛物线上,MA⊥MB.
(1)求p的值;
(2)求点M的横坐标.

【答案】
(1)解:将y=2x+1代入x2=2py,得x2﹣4px﹣2p=0,

设A(x1,y1),B(x2,y2),

则x1+x2=4p,x1x2=﹣2p,

及p>0,得p=1


(2)解:由(1)得设点

由MA⊥MB得

∴(x1+x0)(x2+x0)+4=0,


【解析】(1)联立直线方程与抛物线方程,化为关于x的一元二次方程,由根与系数的关系得到A,B两点横坐标的和与积,由弦长公式求得p的值;(2)由(1)求出A,B的坐标,设出M的坐标,利用MA⊥MB得,代入根与系数的关系求得答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在一次期末数学测试中,唐老师任教任教班级学生的成绩情况如下所示:

(1)根据上述表格,试估计唐老师所任教班级的学生在本次期末数学测试的平均成绩;

(2)现从成绩在中按照分数段,采取分层抽样随机抽取人,再在这人中随机抽取人作小题得分分析,求恰有人的成绩在上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的函数,满足f(x)=﹣f(﹣x),且当x<0时,f(x)=x ,则f(9)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直线PA垂直于圆O所在的平面,△ABC内接于圆O,且AB为圆O的直径,点M为线段PB的中点.现有以下命题:①BC⊥PC;②OM∥平面APC;③点B到平面PAC的距离等于线段BC的长.其中真命题的个数为(
A.3
B.2
C.1
D.0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥P﹣ABC中,PA垂直于底面ABC,∠ACB=90°,AE⊥PB于E,AF⊥PC于F,若PA=AB=2,∠BPC=θ,则当△AEF的面积最大时,tanθ的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有甲,乙,丙,丁四位同学课余参加巴蜀爱心社和巴蜀文学风的活动,每人参加且只能参加一个社团的活动,并且参加每个社团都是等可能的.

(1)求巴蜀爱心社和巴蜀文学风都至少有1人参加的概率;

(2)求甲,乙在同一个社团,丙,丁不在同一个社团的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面平面,四边形为菱形,四边形为矩形, 分别是 的中点, .

(Ⅰ)求证: 平面

(Ⅱ)若三棱锥的体积为,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有下列五个命题: ①平面内,到一定点的距离等于到一定直线距离的点的集合是抛物线;
②平面内,定点F1、F2 , |F1F2|=6,动点M满足|MF1|+|MF2|=6,则点M的轨迹是椭圆;
③在△ABC中,“∠B=60°”是“∠A,∠B,∠C三个角成等差数列”的充要条件;
④“若﹣3<m<5,则方程 =1是椭圆”.
⑤已知向量 是空间的一个基底,则向量 + 也是空间的一个基底.
其中真命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,且的最小值为

(1)求的值;

(2)若不等式对任意恒成立,其中是自然对数的底数,求的取值范围;

(3)设曲线与曲线交于点,且两曲线在点处的切线分别为 .试判断 轴是否能围成等腰三角形?若能,确定所围成的等腰三角形的个数;若不能,请说明理由.

查看答案和解析>>

同步练习册答案