精英家教网 > 高中数学 > 题目详情
5.已知等差数列{an}的前n项和为Sn,且S3=-9,a4+a6=a5
(1)求{an}的通项公式;
(2)求数列{a${\;}_{n}+{2}^{{a}_{n}}$}的前n项和Tn

分析 (1)利用已知条件列出方程,求出数列的首项与公差,然后推出通项公式.
(2)利用拆项法,分别求解等差数列以及等比数列的和即可.

解答 解:(1)设{an}的公差为d,则由题意可得$\left\{\begin{array}{l}{3{a}_{1}+\frac{3×2}{2}×d=-9}\\{{a}_{1}+3d+{a}_{1}+5d={a}_{1}+4d}\end{array}\right.$…(3分)
解得a1=-4,d=1,…(5分)
∴an=-4+1×(n-1)=n-5.   …(6分)
(2)Tn=a1+a2+a3+…+an+${2}^{{a}_{1}}+{2}^{{a}_{2}}+…+{2}^{{a}_{n}}$
=$\frac{n(-4+n-5)}{2}+\frac{1}{32}({2}^{1}+{2}^{2}+{2}^{3}+…+{2}^{n})$  …(10分)
=$\frac{n(n-9)}{2}+\frac{1}{32}×\frac{2(1-{2}^{n})}{1-2}$
=$\frac{n(n-9)}{2}+\frac{{2}^{n}-1}{16}$.…(12分)

点评 本题考查等差数列以及等比数列的和求法,通项公式的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.如果直线l1:2x-y-1=0与直线l2:2x+(a+1)y+2=0平行,那么a等于(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设函数f(x)=$\left\{\begin{array}{l}{|{2}^{x}-a|,x<2}\\{{x}^{2}-3ax+2{a}^{2},x≥2}\end{array}\right.$,若函数f(x)恰有2个零点,则实数a的取值范围是1≤a<2,或a≥4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合A={x∈Z|x≥2},B={1,2,3},则A∩B=(  )
A.B.{2}C.{2,3}D.{x|2≤x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.过点P(2,1)的直线l与函数f(x)=$\frac{2x+3}{2x-4}$的图象交于A,B两点,O为坐标原点,则($\overrightarrow{OA}+\overrightarrow{OB}$)$•\overrightarrow{OP}$=(  )
A.$\sqrt{5}$B.2$\sqrt{5}$C.5D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=2x2+mx+4,它在(-∞,-2]上单调递减,则f(1)的取值范围是(  )
A.f(1)=14B.f(1)>14C.f(1)≤14D.f(1)≥14

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知双曲线与椭圆$\frac{x^2}{4}+{y^2}=1$有相同的焦点F1,F2,P为它们的一个交点,且${\overrightarrow{PF}_1}•\overrightarrow{P{F_2}}=0$,则双曲线方程为$\frac{{x}^{2}}{2}-{y}^{2}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知O为椭圆中心,F1为椭圆的左焦点,A,B分别为椭圆的右顶点与上顶点,P为椭圆上一点,若PF1⊥F1A,PO∥AB,则该椭圆的离心率为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,网格纸上小正方形的边长为1,粗实线画出的某多面体的三视图,则该多面体的体积为(  )
A.8B.$\frac{4}{3}$C.$\frac{8}{3}$D.$\frac{10}{3}$

查看答案和解析>>

同步练习册答案