精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C:+=1(ab0)的离心率为,且过点(1,).

(I)求椭圆C的方程;

(Ⅱ)设与圆O:x2+y2=相切的直线l交椭圆C与A,B两点,求OAB面积的最大值,及取得最大值时直线l的方程.

【答案】(I)(Ⅱ)OAB面积的最大值为,此时直线方程

【解析】

试题分析:(1)运用椭圆的离心率公式和点满足椭圆方程,解方程可得a,b,进而得到椭圆方程;(2)讨论当k不存在时,当k存在时,设直线为y=kx+m,A,B,将直线y=kx+m代入椭圆方程,运用韦达定理和弦长公式,以及直线和圆相切的条件:d=r,结合基本不等式即可得到所求面积的最大值和直线l的方程

试题解析:(1)由题意可得,e==,a2﹣b2=c2,点(1,)代入椭圆方程,可得

+=1,解得a=,b=1,即有椭圆的方程为

(2)①当k不存在时,x=±时,可得y=±,SOAB=××=

②当k存在时,设直线为y=kx+m,A(x1,y1),B(x2,y2),

将直线y=kx+m代入椭圆方程可得(1+3k2)x2+6kmx+3m2﹣3=0,

x1+x2=﹣,x1x2=

由直线l与圆O:x2+y2=相切,可得=,即有4m2=3(1+k2),

|AB|==

==

==2,

当且仅当9k2= 即k=±时等号成立,可得SOAB=|AB|r×2×=

即有OAB面积的最大值为,此时直线方程y=±x±1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得数据整理后,画出频率分布直方图(如图所示),已知图中从左到右前三个小组的频率分别时0.1,0.3,0.4,第一小组的频数为5.

(1)求第四小组的频率?

(2)问参加这次测试的学生人数是多少?

(3)问在这次测试中,学生跳绳次数的中位数落在第几小组内?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 ,且 ,f(x)= ﹣2λ| |(λ为常数),求:
(1) 及| |;
(2)若f(x)的最小值是 ,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若存在实数,使得函数对定义域内的任意均满足,且存在使得,存在使得,则称直线为函数分界线.在下列说法中正确的是__________(写出所有正确命题的编号).

①任意两个一次函数最多存在一条分界线”;

分界线存在的两个函数的图象最多只有两个交点;

分界线

分界线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,0<β< ,cos( +α)=﹣ ,sin( +β)= ,求sin(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某农场计划种植某种新作物,为此对这种作物的两个品种分别称为品种甲和品种乙进行田间试验选取两大块地,每大块地分成小块地,在总共小块地中,随机选小块地种植品种甲,另外小块地种植品种乙

1假设,求第一大块地都种植品种甲的概率;

2试验时每大块地分成小块,即,试验结束后得到品种甲和品种乙在各小块地上的每公顷产量单位:kg/hm2如下表:

分别求品种甲和品种乙的每公顷产量的样本平均和样本方差;根据试验结果,你认为应该种植哪一品种?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱柱中,侧面为矩形, 的中点, 交于点,且平面.

(Ⅰ)证明:平面平面

(Ⅱ)若 的重心为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当 取一切非负实数时,若,求的范围;

(2)若函数存在极大值,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的首项a1=3,通项an与前n项和Sn之间满足2an=SnSn1(n≥2).
(1)求证 是等差数列,并求公差;
(2)求数列{an}的通项公式.

查看答案和解析>>

同步练习册答案