精英家教网 > 高中数学 > 题目详情

【题目】已知动点到定直线的距离与到定点的距离之比为.

1)求点的轨迹的方程;

2)已知点,在轴上是否存在一点,使得曲线上另有一点,满足,且?若存在,求出所有符合条件的点坐标;若不存在,请说明理由.

【答案】12)存在;

【解析】

(1),根据已知条件可得,化简即可得到点的轨迹的方程;

(2) 假设在轴上存在符合题意的点,则点在线段的中垂线上,分三种情况讨论直线的斜率即:斜率不存在;斜率为零;斜率不为零;求出满足条件点的坐标即可.

解:(1)设,由题可得

化简得,即

所以曲线的方程为.

2)假设在轴上存在符合题意的点

则点在线段的中垂线上,由题意知直线的斜率显然存在.

当直线的斜率为时,则.

,则.

,解得,此时.

当直线的斜率不为时,设直线的方程为.

联立

,解得,即.

的中点为.

线段的中垂线为

,得,即.

所以

所以.

由形式可以猜想,故而

,经验证可知满足上式.

下边验证是否还有别解:

,上式可化为

利用韦达定理知此方程有一个正根与一个负根,

所以,此时.

综上,可得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知双曲线C1a0b0)的左右焦点分别为F1F2,点O为坐标原点,点P在双曲线的右支上,且满足|F1F2|=2|OP|.若直线PF2与双曲线C只有一个交点,则双曲线C的离心率为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为直角梯形,,平面平面.

1)求证:

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,两种坐标系中取相同的长度单位.已知直线l的参数方程为t为参数),曲线C的极坐标方程为ρ=4sinθ+).

(1)求直线l的普通方程与曲线C的直角坐标方程;

(2)若直线l与曲线C交于MN两点,求△MON的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以坐标原点为极点,以x轴的非负半轴为极轴,建立极坐标系,已知直线l的参数方程为t为参数),圆C的极坐标方程是.

1)求直线l与圆C的公共点个数;

2)在平面直角坐标系中,圆C经过伸缩变换得到曲线,设为曲线上一点,求的最大值,并求相应点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:过点A,两个焦点为(-1,0),(1,0)。

(Ⅰ)求椭圆C的方程;

(Ⅱ)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】自从新型冠状病毒爆发以来,全国范围内采取了积极的措施进行防控,并及时通报各项数据以便公众了解情况,做好防护.以下是湖南省2020123-31日这9天的新增确诊人数.

日期

23

24

25

26

27

28

29

30

31

时间

1

2

3

4

5

6

7

8

9

新增确诊人数

15

19

26

31

43

78

56

55

57

经过医学研究,发现新型冠状病毒极易传染,一个病毒的携带者在病情发作之前通常有长达14天的潜伏期,这个期间如果不采取防护措施,则感染者与一位健康者接触时间超过15秒,就有可能传染病毒.

1)将123日作为第1天,连续9天的时间作为变量x,每天新增确诊人数作为变量y,通过回归分析,得到模型用于对疫情进行分析.对上表的数据作初步处理,得到下面的一些统计量的值(部分数据已作近似处理):.根据相关数据,求该模型的回归方程(结果精确到0.1),并依据该模型预测第10天新增确诊人数.

2)如果一位新型冠状病毒的感染者传染给他人的概率为0.3,在一次12人的家庭聚餐中,只有一位感染者参加了聚餐,记余下的人员中被感染的人数为,求最有可能(即概率最大)的值是多少.

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,点是圆上一动点,点在线段上,点在半径上,且满足.

(1)在圆上运动时,求点的轨迹的方程

(2)设过点的直线与轨迹交于点不在轴上),垂直于的直线交于点,与轴交于点,若,求点横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心的坐标为,且圆与直线相切,过点的动直线与圆相交于两点,直线与直线的交点为.

(1)求圆的标准方程;

(2)求的最小值;

(3)问:是否是定值?若是,求出这个定值;若不是,请说明理由.

查看答案和解析>>

同步练习册答案