【题目】已知动点到定直线的距离与到定点的距离之比为.
(1)求点的轨迹的方程;
(2)已知点,在轴上是否存在一点,使得曲线上另有一点,满足,且?若存在,求出所有符合条件的点坐标;若不存在,请说明理由.
【答案】(1)(2)存在;或
【解析】
(1)设,根据已知条件可得,化简即可得到点的轨迹的方程;
(2) 假设在轴上存在符合题意的点,则点在线段的中垂线上,分三种情况讨论直线的斜率即:斜率不存在;斜率为零;斜率不为零;求出满足条件点的坐标即可.
解:(1)设,由题可得,
化简得,即,
所以曲线的方程为.
(2)假设在轴上存在符合题意的点,
则点在线段的中垂线上,由题意知直线的斜率显然存在.
当直线的斜率为时,则,.
设,则,.
由,解得,此时.
当直线的斜率不为时,设直线的方程为.
联立得,
则,解得,即.
的中点为.
线段的中垂线为,
令,得,即.
所以,,
所以.
由形式可以猜想,故而,
得,经验证可知满足上式.
下边验证是否还有别解:
令,上式可化为,
利用韦达定理知此方程有一个正根与一个负根,
所以,此时.
综上,可得或.
科目:高中数学 来源: 题型:
【题目】已知双曲线C:1(a0,b0)的左右焦点分别为F1,F2,点O为坐标原点,点P在双曲线的右支上,且满足|F1F2|=2|OP|.若直线PF2与双曲线C只有一个交点,则双曲线C的离心率为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,两种坐标系中取相同的长度单位.已知直线l的参数方程为(t为参数),曲线C的极坐标方程为ρ=4sin(θ+).
(1)求直线l的普通方程与曲线C的直角坐标方程;
(2)若直线l与曲线C交于M,N两点,求△MON的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以坐标原点为极点,以x轴的非负半轴为极轴,建立极坐标系,已知直线l的参数方程为(t为参数),圆C的极坐标方程是.
(1)求直线l与圆C的公共点个数;
(2)在平面直角坐标系中,圆C经过伸缩变换得到曲线,设为曲线上一点,求的最大值,并求相应点M的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:过点A,两个焦点为(-1,0),(1,0)。
(Ⅰ)求椭圆C的方程;
(Ⅱ)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】自从新型冠状病毒爆发以来,全国范围内采取了积极的措施进行防控,并及时通报各项数据以便公众了解情况,做好防护.以下是湖南省2020年1月23日-31日这9天的新增确诊人数.
日期 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
时间 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
新增确诊人数 | 15 | 19 | 26 | 31 | 43 | 78 | 56 | 55 | 57 |
经过医学研究,发现新型冠状病毒极易传染,一个病毒的携带者在病情发作之前通常有长达14天的潜伏期,这个期间如果不采取防护措施,则感染者与一位健康者接触时间超过15秒,就有可能传染病毒.
(1)将1月23日作为第1天,连续9天的时间作为变量x,每天新增确诊人数作为变量y,通过回归分析,得到模型用于对疫情进行分析.对上表的数据作初步处理,得到下面的一些统计量的值(部分数据已作近似处理):,.根据相关数据,求该模型的回归方程(结果精确到0.1),并依据该模型预测第10天新增确诊人数.
(2)如果一位新型冠状病毒的感染者传染给他人的概率为0.3,在一次12人的家庭聚餐中,只有一位感染者参加了聚餐,记余下的人员中被感染的人数为,求最有可能(即概率最大)的值是多少.
附:对于一组数据,…,,其回归直线的斜率和截距的最小二乘估计分别为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆,点,是圆上一动点,点在线段上,点在半径上,且满足.
(1)当在圆上运动时,求点的轨迹的方程;
(2)设过点的直线与轨迹交于点(不在轴上),垂直于的直线交于点,与轴交于点,若,求点横坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆的圆心的坐标为,且圆与直线:相切,过点的动直线与圆相交于,两点,直线与直线的交点为.
(1)求圆的标准方程;
(2)求的最小值;
(3)问:是否是定值?若是,求出这个定值;若不是,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com