精英家教网 > 高中数学 > 题目详情

已知椭圆C1:,抛物线C2:,

且C1、C2的公共弦AB过椭圆C1的右焦点.

(Ⅰ)当AB⊥轴时,求的值,并判断抛物线C2的焦点是否在直线AB上;

(Ⅱ)是否存在的值,使抛物线C2的焦点恰在直线AB上?若存在,

求出符合条件的的值;若不存在,请说明理由.

解:(Ⅰ)当AB⊥x轴时,点A、B关于x轴对称,所以m=0,直线AB的方程为:

        x =1,从而点A的坐标为(1,)或(1,-).  因为点A在抛物线上.

所以,即.此时C2的焦点坐标为(,0),该焦点不在直线AB上.

(II)解法一: 假设存在mp的值使C2的焦点恰在直线AB上,由(I)知直线AB

的斜率存在,故可设直线AB的方程为

消去y………………①

设A、B的坐标分别为(x1,y1), (x2,y2),  

x1,x2是方程①的两根,x1x2.

  由 

消去y.          ………………②

因为C2的焦点在直线上,

所以,即.代入②有.

.                          …………………③

由于x1,x2也是方程③的两根,所以x1x2.

从而. 解得   ……………………④

又AB过C1、C2的焦点,所以

    …………………………………⑤

由④、⑤式得,即

解得于是

因为C2的焦点在直线上,所以.

由上知,满足条件的存在,且

解法二:设A、B的坐标分别为(x1,y1), (x2,y2).

    因为AB既过C1的右焦点,又过C2的焦点

所以.

.           ……①

由(Ⅰ)知,于是直线AB的斜率, ……②

且直线AB的方程是,

所以.        ……③

又因为,所以.    ……④

将①、②、③代入④得.  ……………⑤

  因为,所以.  …………⑥

将②、③代入⑥得  ……………⑦

由⑤、⑦得

解得(舍去).将代入⑤得

由上知,满足条件的存在,且

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C1的中心和抛物线C2的顶点都在原点,且两曲线的焦点均在x轴上,若A(1,2),B(2,0),C(
2
2
2
)
中有两点在椭圆C1上,另一点在抛物线C2上.
(Ⅰ)求椭圆C1和抛物线C2的方程;
(Ⅱ)设直线l与椭圆C1交于M,N两点,与抛物线C2交于P,Q两点.问是否存在直线l使得以线段MN为直径的圆和以线段PQ为直径的圆都过原点?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知椭圆C1的中心在坐标原点,两个焦点分别为F1(-2,0),F2(2,0),点A(2,3)在椭圆C1上,过点A的直线L与抛物线C2x2=4y交于B、C两点,抛物线C2在点B,C处的切线分别为l1,l2,且l1与l2交于点P.
(1)求椭圆C1的方程;
(2)是否存在满足|PF1|+|PF2|=|AF1|+|AF2|的点P?若存在,指出这样的点P有几个(不必求出点P的坐标);若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1
(a>b>0)经过点M(1,
3
2
),且其右焦点与抛物线C2y2=4x的焦点F重合.
①求椭圆C1的方程;
②直线l经过点F与椭圆C1相交于A、B两点,与抛物线C2相交于C、D两点.求
|AB|
|CD|
的最大值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年辽宁省沈阳市高三高考领航考试(二)理科数学试卷(解析版) 题型:解答题

已知椭圆C1:,抛物线C2:,且C1、C2的公共弦AB过椭圆C1的右焦点.

(Ⅰ)当AB⊥轴时,求的值,并判断抛物线C2的焦点是否在直线AB上;

(Ⅱ)是否存在的值,使抛物线C2的焦点恰在直线AB上?若存在,求出符合条件的的值;若不存在,请说明理由.

 

查看答案和解析>>

同步练习册答案