精英家教网 > 高中数学 > 题目详情
17.已知双曲线与椭圆$\frac{x^2}{4}+{y^2}=1$有相同的焦点F1,F2,P为它们的一个交点,且${\overrightarrow{PF}_1}•\overrightarrow{P{F_2}}=0$,则双曲线方程为$\frac{{x}^{2}}{2}-{y}^{2}$=1.

分析 利用椭圆、双曲线的定义,求出几何量,即可得出双曲线方程.

解答 解:由题意|PF1|+|PF2|=4,|PF1|2+|PF2|2=12,
∴|PF1||PF2|=2,
∴||PF1|-|PF2||=2$\sqrt{2}$,
∴$a=\sqrt{2}$,∴b=1,
∴双曲线方程为$\frac{{x}^{2}}{2}-{y}^{2}$=1.
故答案为$\frac{{x}^{2}}{2}-{y}^{2}$=1.

点评 本题考查双曲线方程,考查椭圆、双曲线的定义,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.如果关于x的不等式x2<ax+b的解集是{x|1<x<3},那么ba等于(  )
A.-81B.81C.-64D.64

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.数列{an}中,an+2-2an+1+an=1(n∈N*),a1=1,a2=3..
(1)求证:{an+1-an}是等差数列;
(2)求数列{$\frac{1}{{a}_{n}}$}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知等差数列{an}的前n项和为Sn,且S3=-9,a4+a6=a5
(1)求{an}的通项公式;
(2)求数列{a${\;}_{n}+{2}^{{a}_{n}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知a=$\sqrt{0.4}$,b=20.4,c=0.40.2,则a,b,c三者的大小关系是(  )
A.b>c>aB.b>a>cC.a>b>cD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.定义在R上的函数f(x)满足f'(x)-f(x)=x•ex,且$f(0)=\frac{1}{2}$,则$\frac{{x•{e^x}}}{f(x)}$的最大值为(  )
A.1B.-$\frac{1}{2}$C.-1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某飞机失联,经卫星侦查,其最后出现在小岛O附近.现派出四艘搜救船A,B,C,D,为方便联络,船A,B始终在以小岛O为圆心,100海里为半径的圆上,船A,B,C,D构成正方形编队展开搜索,小岛O在正方形编队外(如图).设小岛O到AB的距离为x,∠AOB=α,D船到小岛O的距离为d.
(1)请分别求d关于x,α的函数关系式d=g(x),d=f(α);并分别写出定义域;
(2)当A,B两艘船之间的距离是多少时搜救范围最大(即d最大).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知f(x)为偶函数,且x≥0时,f(x)=x-[x]([x]表示不超过x的最大整数).设g(x)=f(x)-kx-k(k∈R),若k=1,则函数g(x)有2个零点;若函数g(x)三个不同的零点,则k的取值范围是$({-\frac{1}{3}}\right.,\left.{-\frac{1}{4}}]∪[{\frac{1}{3},\frac{1}{2}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,在一个面积为8的矩形中随机撒一粒黄豆,若黄豆落到阴影部分的概率为$\frac{1}{4}$,则阴影部分的面积为2.

查看答案和解析>>

同步练习册答案