精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,直线经过点,其倾斜角为,以原点为极点,以轴非负半轴为极轴,与直角坐标系取相同的长度单位,建立极坐标系,设曲线的参数方程为为参数),曲线的极坐标方程为.

1)求曲线的普通方程和极坐标方程;

2)若直线与曲线有公共点,求的取值范围.

【答案】1)普通方程为,极坐标方程为 2

【解析】

1)由,代入,化简即可求得曲线的普通方程,再结合即可求解的曲线的极坐标方程;

(2)设直线方程为,由直线与曲线有公共点可得圆心到直线距离,可解得,进而求得的取值范围

1)显然,参数,由

代入并整理,得

代入,得

.

∴曲线的普通方程为

极坐标方程为.

2)曲线的直角坐标方程为,曲线是以为圆心,半径为2的圆.

时,直线与曲线没有公共点,

时,设直线的方程为.

圆心到直线的距离为.

,得.

,即的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】己知函数fx)对xR均有fx+2f(﹣x)=mx6,若fxlnx恒成立,则实数m的取值范围是_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合均为实数集的子集,记.

(1)已知,试用列举法表示

(2),当时,曲线的焦距为,如果,设中的所有元素之和为,求的值;

3)在(2)的条件下,对于满足,且的任意正整数,不等式恒成立, 求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知是曲线上的动点,将绕点顺时针旋转得到,设点的轨迹为曲线.以坐标原点为极点,轴的正半轴为极轴建立极坐标系.

1)求曲线的极坐标方程;

2)在极坐标系中,点,射线与曲线分别相交于异于极点两点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆:的右焦点为,过点的直线(不与轴重合)与椭圆相交于两点,直线轴相交于点,过点,垂足为D.

1)求四边形为坐标原点)面积的取值范围;

2)证明直线过定点,并求出点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求曲线在点处的切线方程;

2)当时,求证:函数恰有两个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线C的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为

(1)求曲线C的参数方程和直线的直角坐标方程;

(2)若直线轴和y轴分别交于AB两点,P为曲线C上的动点,求PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ) 求函数的单调区间;

(Ⅱ) 时,求函数上最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,右顶点为,且过点,圆是以线段为直径的圆,经过点且倾斜角为的直线与圆相切.

(1)求椭圆及圆的方程;

(2)是否存在直线,使得直线与圆相切,与椭圆交于两点,且满足?若存在,请求出直线的方程,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案