精英家教网 > 高中数学 > 题目详情

(本小题满分13分)

已知几何体的三视图及直观图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形.

(Ⅰ)求此几何体的体积的大小;

(Ⅱ)求异面直线所成角的余弦值;

(Ⅲ)试探究在上是否存在点,使得

,并说明理由.

 

【答案】

 

(1)16

(2)

(3)

【解析】解:(Ⅰ)由该几何体的三视图知,且EC=BC=AC=4 ,BD=1,

即该几何体的体积V为16.

(Ⅱ)以C为原点,以CA,CB,CE所在直线为x,y,z轴建立空间直角坐标系.则A(4,0,0),B(0,4,0),D(0,4,1),E(0,0,4).

,∴异面直线DE与AB所成的角的余弦值为

(Ⅲ)设满足题设的点Q存在,其坐标为(0,m,n),则

∵AQBQ,    ∴. ①

 ∵点Q在ED上,∴存在使得

.②

②代入①得,解得

∴满足题设的点Q存在,其坐标为

 

 

练习册系列答案
相关习题

科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题

(本小题满分13分)已知函数.

(1)求函数的最小正周期和最大值;

(2)在给出的直角坐标系中,画出函数在区间上的图象.

(3)设0<x<,且方程有两个不同的实数根,求实数m的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题

(本小题满分13分)已知定义域为的函数是奇函数.

(1)求的值;(2)判断函数的单调性;

(3)若对任意的,不等式恒成立,求k的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题

(本小题满分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题

 

(本小题满分13分)如图,正三棱柱的所有棱长都为2,的中点。

(Ⅰ)求证:∥平面

(Ⅱ)求异面直线所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[来源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题

(本小题满分13分)

已知为锐角,且,函数,数列{}的首项.

(1) 求函数的表达式;

(2)在中,若A=2,,BC=2,求的面积

(3) 求数列的前项和

 

 

查看答案和解析>>

同步练习册答案