精英家教网 > 高中数学 > 题目详情

已知某海滨浴场的海浪高达y(米)是时间t(0≤t≤24,单位:小时)的函数,记作y=f(t).下表是某日各时的浪高数据.

t(时)
0
3
6
9
12
15
18
21
24
y(米)
1.5
1.0
0.5
1.0
1.5
1.0
0.5
0.99
1.5
经长期观测,y=f(t)的曲线可近似地看成是函数y=Acosωt+b.
(1)根据以上数据,求出函数y=Acosωt+b的最小正周期T、振幅A及函数表达式;
(2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8:00至晚上20:00之间,有多长时间可供冲浪者进行运动?

(1) y=cost+1.
(2)在规定时间上午8:00至晚上2:00之间,有6个小时时间可供冲浪者运动,即上午9:00至下午15:00.

解析试题分析:(1)由表中数据,知周期T=12,
∵ω=.
由t=0,y=1.5,得A+b=1.5.
由t=3,y=1.0,得b=1.0.
∴A=0.5,b=1,∴振幅为
∴y=cost+1.
(2)由题意知,当y>1时才可对冲浪者开放.
cost+1>1,∴cost>0.
∴2kπ-<t<2kπ+
即12k-3<t<12k+3.
∵0≤t≤24,故可令k分别为0、1、2,得0≤t<3或9<t<15或21<t≤24.
∴在规定时间上午8:00至晚上20:00之间,有6个小时时间可供冲浪者运动,即上午9:00至下午15:00.
考点:函数模型,三角函数的图象和性质。
点评:中档题,作为一道实际应用问题,首先应“审清题意,明确函数模型,解答数学问题”。余弦形函数的图像和性质,可类比正弦型函数的图象和性质加以研究。本题与不等式解法相结合,注意将数字转化成时刻。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数)的最小正周期为.
(1)求的值及函数的单调递增区间;
(2)当时,求函数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的最小正周期为.
(Ⅰ)求的值;
(Ⅱ)求函数在区间上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,倾斜角为的直线与单位圆在第一象限的部分交于点,单位圆与坐标轴交于点,点轴交于点轴交于点,设

(1)用角表示点、点的坐标;
(2)求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,,)的图像与轴的交点
,它在轴右侧的第一个最高点和第一个最低点的坐标分别为
(1)求函数的解析式;
(2)若锐角满足,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且
(Ⅰ)求sinA的值;
(Ⅱ)若,b=5,求向量方向上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图, 已知单位圆上有四点, 分别设的面积为.

(1)用表示
(2)求的最大值及取最大值时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 的最小正周期为.
(Ⅰ)求的值;
(Ⅱ)讨论在区间上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(其中>0),且函数的最小正周期为.
(Ⅰ)求的值;
(Ⅱ)求函数在区间上的最大值和最小值.

查看答案和解析>>

同步练习册答案