精英家教网 > 高中数学 > 题目详情

【题目】给出下列五个命题:
①x= 是函数y=2sin(2x﹣ )的一条对称轴;
②函数y=tanx的图象关于点( ,0)对称;
③正弦函数在第一象限为增函数
④函数y=cos(x﹣ )的一个单调增区间是(﹣
以上四个命题中正确的有(填写正确命题前面的序号)

【答案】①②
【解析】解:①当x= ,则2× = = ,此时函数y=2sin(2x﹣ )=2sin =2为函数的最大值,则x= 是函数y=2sin(2x﹣ )的一条对称轴,正确②函数y=tanx的图象关于点( ,0)对称,当k=1时,对称中心为( ,0)对称;故②正确,③x= 和x= 是第一象限的角,满足 但sin =sin ,则正弦函数在第一象限为增函数,错误,故③错误,④当﹣ <x< 时,﹣ <x﹣ ,此时函数y=cos(x﹣ )不单调,故④错误,
所以答案是:①②
【考点精析】掌握命题的真假判断与应用是解答本题的根本,需要知道两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我国古代太极图是一种优美的对称图.如果一个函数的图像能够将圆的面积和周长分成两个相等的部分,我们称这样的函数为圆的“太极函数”.下列命题中错误命题的个数是( )

对于任意一个圆其对应的太极函数不唯一;

如果一个函数是两个圆的太极函数,那么这两个圆为同心圆;

的一个太极函数为

圆的太极函数均是中心对称图形;

奇函数都是太极函数;

偶函数不可能是太极函数.

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某个服装店经营某种服装,在某周内获纯利润y/元与该周每天销售这种服装件数x/件之间的数据如表:

X

3

4

5

6

7

8

9

y

66

69

73

81

89

90

91

已知x12+x22+…+x72=280,x1y1+x2y2+…+x7y7=3487.
(1)求
(2)画出散点图;
(3)判断纯利润y与每天销售件数x之间是否线性相关,如果线性相关,求出线性回归方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某中学举行的物理知识竞赛中,将三个年级参赛学生的成绩在进行整理后分成5组,绘制出如图所示的频率分布直方图,图中从左到右依次为第一、第二、第三、第四、第五小组.已知第三小组的频数是15.

(1)求成绩在50~70分的频率是多少;
(2)求这三个年级参赛学生的总人数是多少;
(3)求成绩在80~100分的学生人数是多少.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人上午7时,乘摩托艇以匀速vkm/h(8≤v≤40)从A港出发到距100km的B港去,然后乘汽车以匀速wkm/h(30≤w≤100)自B港向距300km的C市驶去.应该在同一天下午4至9点到达C市. 设乘坐汽车、摩托艇去目的地所需要的时间分别是xh,yh.
(1)作图表示满足上述条件的x,y范围;
(2)如果已知所需的经费p=100+3(5﹣x)+2(8﹣y)(元),那么v,w分别是多少时p最小?此时需花费多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个三棱锥的三视图如下图所示,则该几何体的体积为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于平面向量 ,有下列三个命题:
①若 = ,则 =
②若 =(1,k), =(﹣2,6), ,则k=﹣3.
③非零向量 满足| |=| |=| |,则 + 的夹角为60°.
其中真命题的序号为 . (写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一条光线从点(﹣2,﹣3)射出,经y轴反射后与圆(x+3)2+(y﹣2)2=1相切,则反射光线所在直线的斜率为(
A.﹣ 或﹣
B.﹣ 或﹣
C.﹣ 或﹣
D.﹣ 或﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)讨论函数的单调性;

2)若,求函数的最值.

查看答案和解析>>

同步练习册答案