【题目】【2017届江西省南昌市高三第一次模拟考试数学(理)】已知函数(,是自然对数的底数).
(1)若是上的单调递增函数,求实数的取值范围;
(2)当时,证明:函数有最小值,并求函数最小值的取值范围.
【答案】(Ⅰ)(Ⅱ)
【解析】试题分析: (Ⅰ)先将单调性转化为不等式恒成立:当时,函数恒成立,再变量分离转化为对应函数最值:的最小值,最后根据导数求函数最值,(Ⅱ)利用二次求导,确定导函数为单调递增函数,再利用零点存在定理确定导函数有且仅有一个零点,根据导函数符号变化规律得函数在此零点(极小值点)取最小值.最后利用导函数零点表示函数最小值,并根据导函数零点取值范围,利用导数方法确定最小值函数的值域.
试题解析: (Ⅰ),
依题意:当时,函数恒成立,即恒成立,
记,则,
所以在上单调递增,所以,所以,即;
(Ⅱ)因为,所以是上的增函数,
又, ,所以存在使得
且当时,当时,所以的取值范围是.
又当,,当时,,
所以当时,.且有
∴.
记,则,
所以,即最小值的取值范围是.
科目:高中数学 来源: 题型:
【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中将底面为直角三角形的直棱柱称为堑堵,将底面为矩形的棱台称为刍童.在如图所示的堑堵与刍童的组合体中,.台体体积公式:,其中分别为台体上、下底面面积,为台体高.
(Ⅰ)证明:直线 平面;
(Ⅱ)若,,,三棱锥的体积,求该组合体的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将圆上每一点的纵坐标不变,横坐标变为原来的,得曲线C.
(Ⅰ)写出C的参数方程;
(Ⅱ)设直线l: 与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1 P2的中点且与l垂直的直线的极坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{bn}中的b3、b4、b5.
(1)求数列{bn}的通项公式;
(2)数列{bn}的前n项和为Sn,求证:数列是等比数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司拟投资100万元,有两种投资方案可供选择:一种是年利率为10%,按单利计算,5年后收回本金和利息;另一种是年利率为9%,按每年复利一次计算,5年后收回本金和利息.哪一种投资更有利?这种投资比另一种投资5年可多得利息多少元?(结果精确到0.01万元)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com