精英家教网 > 高中数学 > 题目详情

如图,在三棱柱ABC—中,底面为正三角形,平面ABC,=2AB,N是的中点,M是线段上的动点。

(1)当M在什么位置时,,请给出证明;
(2)若直线MN与平面ABN所成角的大小为,求的最大值。

(1)的中点;(2)

解析试题分析:(1)根据题意,由于在三棱柱ABC—中,底面为正三角形,平面ABC,=2AB,N是的中点,M是线段上的动点,根据题意猜想当点M在的中点时成立,证明:因为底面时正三角形侧面是矩形,高为2,底面边长设为1,那么可知根据线面垂直的性质定理能得到
(2)根据线面角的定义,那么由于直线MN与平面ABN所成角的大小为,那么借助于平面ABN的垂线段来得到线面角,借助于长度的比列关系可知,的最大值,也可以通过建立空间直角坐标系来求解线面角,借助于向量法来得到三角函数关系式,进而求解最值。
考点:直线与平面之间的平行和垂直关系
点评:本题考查空间中直线与平面之间的平行和垂直关系,用空间向量求解夹角,本题解题的关键是建立坐标系,把理论的推导转化成数字的运算,降低了题目的难度

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,三棱柱的所有棱长都为,且平面中点.

(Ⅰ)求证:
(Ⅱ)求二面角的大小的余弦值;
(Ⅲ)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在三棱锥PABC中,已知PC⊥平面ABC,点C在平面PBA内的射影D在直线PB上.

(1)求证:AB⊥平面PBC;
(2)设AB=BC,直线PA与平面ABC所成的角为45°,求异面直线AP与BC所成的角;
(3)在(2)的条件下,求二面角C-PA-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四边形ABCD中,AC平分∠DAB,∠ABC=60°,AC=6,AD=5,S△ADC,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,为圆的直径,点在圆上,,矩形所在的平面和圆所在的平面互相垂直,且.

(1)求证:平面
(2)设的中点为,求证:平面
(3)设平面将几何体分成的两个锥体的体积分别为,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知四棱锥的底面是等腰梯形,分别是的中点.

(1)求证:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在正四棱锥中,底面是边长为2的正方形,侧棱,的中点,是侧棱上的一动点。

(1)证明:
(2)当直线时,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,是正三角形,都垂直于平面,且的中点.

求证:(1)平面
(2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

 是双曲线 上一点,分别是双曲线的左、右顶点,直线的斜率之积为.

(1)求双曲线的离心率;
(2)过双曲线的右焦点且斜率为1的直线交双曲线于两点,为坐标原点,为双曲线上一点,满足,求的值.

查看答案和解析>>

同步练习册答案