精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1),求函数的单调递增区间;

(2)在区间内至少存在一个实数,使得成立,求实数的取值范围.

【答案】(1)单调递增区间是;(2).

【解析】试题分析:(1)先确定函数然后对函数进行求导利用导数的正负建立不等式求得函数的单调性与单调区间;(2)先对函数进行求导然后通过分类讨论确定函数的单调性求得函数的最小值利用最小值小于0,建立不等式求解不等式得到实数的取值范围.

试题解析:(1), ,,,

所以函数上为增函数,

即函数的单调递增区间是.

(2) ,

,, [1,2]恒成立,

[1,2]上为增函数,,

所以,这与矛盾.

,,,;

,所以当, 取得最小值,

因此,,可得,

这与矛盾.

,, [1,2]恒成立, [1,2]上为减函数,

所以,

所以,解得,满足.

综上所述,实数的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】平面α外有两条直线mn,如果mn在平面α内的投影分别是m1n1,给出下列四个命题:①m1n1mn;②mnm1n1;③m1n1相交mn相交或重合;④m1n1平行mn平行或重合.其中不正确的命题个数是(  )

A. 1 B. 2

C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AC是圆O的直径,点B在圆O上,∠BAC30°BMAC于点MEA⊥平面ABCFCEAAC4EA3FC1.

(1)证明:EMBF

(2)求平面BEF与平面ABC所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于集合,定义了一种运算,使得集合中的元素间满足条件:如果存在元素,使得对任意,都有,则称元素是集合对运算的单位元素.例如: ,运算为普通乘法;存在,使得对任意,都有,所以元素是集合对普通乘法的单位元素.

下面给出三个集合及相应的运算

,运算为普通减法;

{表示阶矩阵, },运算为矩阵加法;

(其中是任意非空集合),运算为求两个集合的交集.

其中对运算有单位元素的集合序号为( )

A. ①② B. ①③ C. ①②③ D. ②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 为圆的直径,点在圆上, ,矩形和圆所在的平面互相垂直,已知

(Ⅰ)求证:平面平面

(Ⅱ)当的长为何值时,二面角的大小为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 为圆柱的母线, 是底面圆的直径, 的中点.

(Ⅰ)问: 上是否存在点使得平面?请说明理由;

(Ⅱ)在(Ⅰ)的条件下,若平面,假设这个圆柱是一个大容器,有条体积可以忽略不计的小鱼能在容器的任意地方游弋,如果小鱼游到四棱锥外会有被捕的危险,求小鱼被捕的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 ).

(1)当时,若函数的图象在处有相同的切线,求的值;

(2)当时,若对任意和任意,总存在不相等的正实数,使得,求的最小值;

(3)当时,设函数的图象交于 两点.求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥PABCD中,ADBC,平面PAC⊥平面ABCDAB=AD=DC=1

ABC=DCB=60EPC上一点.

Ⅰ)证明:平面EAB⊥平面PAC

Ⅱ)若△PAC是正三角形EPC中点求三棱锥AEBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了解用户对其产品的满意度,从AB两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:

A地区:

62

73

81

92

95

85

74

64

53

76


78

86

95

66

97

78

88

82

76

89

B地区:

73

83

62

51

91

46

53

73

64

82


93

48

95

81

74

56

54

76

65

79

)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度的平均值及分散程度(不要求算出具体值,给出结论即可):

)根据用户满意度评分,将用户的满意度从低到高分为三个等级:

满意度评分

低于70

70分到89

不低于90

满意度等级

不满意

满意

非常满意

记事件C“A地区用户的满意度等级高于B地区用户的满意度等级,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率。

查看答案和解析>>

同步练习册答案