精英家教网 > 高中数学 > 题目详情
15.用导数的定义求函数y=$\sqrt{x}$的导数.

分析 利用导数的定义进行求解即可.

解答 解:由导数的定义可得$\underset{lim}{△x→0}$$\frac{\sqrt{x+△x}-\sqrt{x}}{△x}$
=$\underset{lim}{△x→0}$$\frac{(\sqrt{x+△x}-\sqrt{x})(\sqrt{x+△x}+\sqrt{x})}{△x•(\sqrt{x+△x}+\sqrt{x})}$
=$\underset{lim}{△x→0}$$\frac{△x}{△x(\sqrt{x+△x}+x)}$
=$\underset{lim}{△x→0}$$\frac{1}{\sqrt{x+△x}+\sqrt{x}}$
=$\frac{1}{2\sqrt{x}}$

点评 本题考查定义法求导数的值,涉及极限的运算,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知集合$A=\{x\left|{\frac{x-2}{x-7}<0\}}\right.$,B={x|x2-12x+20<0},C={x|5-a<x<a}
(1)求集合A,B;   
(2)求A∪B,(∁RA)∩B;   
(3)若C⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.cos350°cos40°-sin190°cos50°=(  )
A.$-\frac{1}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=Asin(ωx+φ)+B,(其中A>0,ω>0,0<φ<$\frac{π}{2}$)的图象上的一个最高点为M($\frac{π}{12}$,3),最低点为N($\frac{7π}{12}$,-1),且与x轴的一个交点为P($\frac{5π}{12}$,0).
(1)求f(x)的解析式;
(2)求f(x)的单调增区间;
(3)求f(x),x∈(0,$\frac{π}{6}$)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.当x=0时,函数f(x)=$\frac{1}{2}$(ex+e-x)取得极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设函数f(x)=$\left\{\begin{array}{l}{1-|x-1|,x∈(-∞,2)}\\{\frac{1}{2}f(x-2),x∈[2,+∞)}\end{array}\right.$,则函数F(x)=x•[f(x)+$\frac{3}{10}$]-$\frac{13}{10}$的零点个数为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列说法正确的是(  )
A.若直线l平行于平面α内的无数条直线,则l∥α
B.若直线a在平面α外,则a∥α
C.若直线a∥b,b?α,则a∥α
D.若直线a∥b,b?α,则直线a平行于平面α内的无数条直线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知圆C:x2+y2-2x+4y=0,若直线l:y=k(x-3).
(1)若直线l过圆C的圆心,求直线l在y轴上的截距;
(2)若圆C被直线l截得的弦长大于4,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知|$\overrightarrow{a}$|=10,|$\overrightarrow{b}$|=12,且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°,求(3$\overrightarrow{a}$)•($\frac{1}{5}$$\overrightarrow{b}$)

查看答案和解析>>

同步练习册答案