精英家教网 > 高中数学 > 题目详情
设直线y=kx与椭圆
x2
4
+
y2
3
=1
相交于A、B两点,分别过A、B向x轴作垂线,若垂足恰为椭圆的两个焦点,则k等于(  )
A、±
3
2
B、±
2
3
C、±
1
2
D、±2
分析:将直线方程与椭圆方程联立,得(3+4k2)x2=12.分别过A、B向x轴作垂线,垂足恰为椭圆的两个焦点,说明A,B的横坐标是±1,即方程(3+4k2)x2=12的两个根为±1,代入求出k的值.
解答:解:将直线与椭圆方程联立,
y=kx
x2
4
+
y2
3
=1

化简整理得(3+4k2)x2=12(*)
因为分别过A、B向x轴作垂线,垂足恰为椭圆的两个焦点,
故方程的两个根为±1.代入方程(*),得k=±
3
2

故选A.
点评:本题考查了直线与圆锥曲线的交点问题,方法是将直线与圆锥曲线方程联立来求解,此方法是数学圆锥曲线中的重要思想方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的右焦点为F2(3,0),离心率为e.
(Ⅰ)若e=
3
2
,求椭圆的方程;
(Ⅱ)设直线y=kx与椭圆相交于A,B两点,M,N分别为线段AF2,BF2的中点.若坐标原点O在以MN为直径的圆上,且
2
2
<e≤
3
2
,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的右焦点为F2(3,0),离心率为e=
3
2

(1)求椭圆的方程.
(2)设直线y=kx与椭圆相交于A,B两点,M,N分别为线段AF2,BF2的中点,若坐标原点O在以MN为直径的圆上,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设直线y=kx与椭圆
x2
4
+
y2
3
=1
相交于A、B两点,分别过A、B向x轴作垂线,若垂足恰为椭圆的两个焦点,则k等于
±
3
2
±
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•宝坻区一模)已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的右焦点为F2(3,0),离心率为e.
(Ⅰ)若e=
3
2
,求椭圆的方程;
(Ⅱ)设直线y=kx与椭圆相交于A,B两点,若
AF2
BF2
=0
,且
2
2
<e≤
3
2
,求k的取值范围.

查看答案和解析>>

同步练习册答案