精英家教网 > 高中数学 > 题目详情
4.设数列{an}满足a1=0,nan+1-(n+1)an=n2+n+1,n∈N*
(1)证明:{$\frac{{a}_{n}+1}{n}$}为等差数列:
(2)求数列{an}的通项公式:
(3)证明:$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{n}}$<$\frac{3}{4}$.

分析 (1)由条件可得n(an+1+1)-(n+1)(an+1)=n(n+1),两边除以n(n+1),运用等差数列的定义即可得证;
(2)由等差数列的通项公式,化简即可得到所求;
(3)由$\frac{1}{{a}_{n}}$=$\frac{1}{{n}^{2}-1}$=$\frac{1}{(n-1)(n+1)}$=$\frac{1}{2}$($\frac{1}{n-1}$-$\frac{1}{n+1}$),运用裂项相消求和以及不等式的性质即可得证.

解答 (1)证明:nan+1-(n+1)an=n2+n+1,
即为n(an+1+1)-(n+1)(an+1)=n(n+1),
即有$\frac{{a}_{n+1}+1}{n+1}$-$\frac{{a}_{n}+1}{n}$=1,
则{$\frac{{a}_{n}+1}{n}$}为首项是1,公差为1的等差数列;
(2)解:由(1)可得$\frac{{a}_{n}+1}{n}$=1+n-1=n,
即有an=n2-1;
(3)证明:$\frac{1}{{a}_{n}}$=$\frac{1}{{n}^{2}-1}$=$\frac{1}{(n-1)(n+1)}$=$\frac{1}{2}$($\frac{1}{n-1}$-$\frac{1}{n+1}$),
则$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{n}}$=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{2}$-$\frac{1}{4}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{n-2}$-$\frac{1}{n}$+$\frac{1}{n-1}$-$\frac{1}{n+1}$)
=$\frac{1}{2}$(1+$\frac{1}{2}$-$\frac{1}{n}$-$\frac{1}{n+1}$)=$\frac{3}{4}$-$\frac{1}{2}$($\frac{1}{n}$+$\frac{1}{n+1}$)<$\frac{3}{4}$.

点评 本题考查等差数列的定义和通项公式的运用,考查裂项相消求和和不等式的性质证明不等式,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=kex-$\frac{1}{2}$x2(k∈R).
(1)若x轴是曲线y=f(x)的一条切线,求实数k的值;
(2)设k<0,求函数g(x)=f′(x)+e2x+x在区间(-∞,ln 2]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.函数f(x)=Asin(ωx+φ)(ω>0,|φ|<π,x∈R)的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)若f($\frac{8}{π}$x0)=-1,x0∈($\frac{π}{4},\frac{3π}{4}$),求sinx0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知:空间四边形ABCD的各条边和对角线长都等于a,E,F,G分别是AB,CD,AD的中点.
(1)给出直线EG和直线FG的一个方向向量;
(2)给出平面CDE的一个法向量.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(x)=$\frac{m{x}^{2}-2mx+m-1}{{x}^{2}-2x+1}$(m∈R),试比较f(5)与f(-π)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下表是某市近30年来月平均气温(℃)的数据统计表:则适合这组数据的函数模型是(  )
月份123456789101112
平均温度-5.9-3.33.39.315.120.322.822.218.211.94.3-2.4
A.y=acos$\frac{πx}{6}$B.y=acos$\frac{(x-1)π}{6}$+k(a>0,k>0)
C.y=-acos$\frac{(x-1)π}{6}$+k(a>0,k>0)D.y=acos$\frac{πx}{6}$-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.己知幂函数y=x${\;}^{{m}^{2}-2m-3}$(m∈N*)为偶函数,且在(0,+∞)是减函数,求m的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.己知a,b,c为正实数,且a+b+c=2.
(1)求证:ab+bc+ac≤$\frac{4}{3}$;
(2)若a,b,c都小于1,求a2+b2+c2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设不等式组$\left\{\begin{array}{l}{x-y+1≥0}\\{2x-y-2≤0}\\{x≥0}\\{y≥0}\end{array}\right.$表示的平面区域的面积为a,则($\sqrt{x}$-$\frac{2a}{7x}$)2015的展开式中系数最小的项是第1007项.(用数字作答)

查看答案和解析>>

同步练习册答案