精英家教网 > 高中数学 > 题目详情

【题目】已知自然数20个正整数因子(包括1和本身),它们从小到大依次记作,…,,且序号为的因数为.求自然数

【答案】2000

【解析】

因为的因数,

所以,的因数.

于是,

.此时,

知,含有1,2,4,5,10,20这六个正整数因子,

所以至少含有25这两个质因子.

20个正因子,

可设为为不等于25的质数)、

(1)当时,

①当时,,…,依次为1,2,3,4,5,6,8,10.此时,,与相矛盾.

②当时,,…,依次为1,2,4,5,7,8,10,14.此时,,与相矛盾.

③当时,,…,依次为1,2,4,5,8,10,,16或为1,2,4,5,8,10,16,,与相矛盾.

④当时,的正因数为1,2,4,5,8,10,16,20,40,80,,….

于是,,不为质数,

(2)当时,.不满足

(3)当时,,与相矛盾.

(4)当时,.显然满足

故所求的自然数2000.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数在点处的切线为.

(1)当求证函数的图像(除切点外)均为切线的下方

(2)当的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在盒子里有大小相同,仅颜色不同的乒乓球共10个,其中红球5个,白球3个,蓝球2.现从中任取出一球确定颜色后放回盒子里,再取下一个球.重复以上操作,最多取3次,过程中如果取出蓝色球则不再取球.

1)求整个过程中恰好取到2个白球的概率;

2)求取球次数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】上饶市在某次高三适应性考试中对数学成绩数据统计显示,全市10000名学生的成绩近似服从正态分布,现某校随机抽取了50名学生的数学成绩分析,结果这50名学生的成绩全部介于85分到145分之间,现将结果按如下方式分为6组,第一组,第二组,第六组,得到如图所示的频率分布直方图:

1)试由样本频率分布直方图估计该校数学成绩的平均分数;

2)若从这50名学生中成绩在125分(含125分)以上的同学中任意抽取3人,该3人在全市前13名的人数记为,求的概率.

附:若,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空间中有不共面的个点.求证:存在无穷个平面,恰好通过其中的两个点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了提高学生的身体素质,某校高一、高二两个年级共名学生同时参与了我运动,我健康,我快乐的跳绳、踢毽等系列体育健身活动.为了了解学生的运动状况,采用分层抽样的方法从高一、高二两个年级的学生中分别抽取名和名学生进行测试.下表是高二年级的名学生的测试数据(单位:个/分钟):

学生编号

1

2

3

4

5

跳绳个数

179

181

168

177

183

踢毽个数

85

78

79

72

80

1)求高一、高二两个年级各有多少人?

2)设某学生跳绳/分钟,踢毽/分钟.,且时,称该学生为运动达人”.

①从高二年级的学生中任选一人,试估计该学生为运动达人的概率;

②从高二年级抽出的上述名学生中,随机抽取人,求抽取的名学生中为span>运动达人的人数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)判断的单调性,并证明之;

2)若存在实数,使得函数在区间上的值域为,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率与双曲线的离心率互为倒数,分别为椭圆的左、右顶点,且.

1)求椭圆的方程;

2)已知过左顶点的直线与椭圆另交于点,与轴交于点,在平面内是否存在一定点,使得恒成立?若存在,求出该点的坐标,并求面积的最大值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为抑制房价过快上涨和过度炒作,各地政府响应中央号召,因地制宜出台了系列房价调控政策.某市为拟定出台房产限购的年龄政策为了解人们对房产限购年龄政策的态度,对年龄在岁的人群中随机调查100人,调查数据的频率分布直方图和支持房产限购的人数与年龄的统计结果如下:

年龄

支持的人数

15

5

15

28

17

1)由以上统计数据填列联表,并判断能否在犯错误的概率不超过的前提下认为以44岁为分界点的不同人群对房产限购年龄政策的支持度有差异;

44岁以下

44岁及44岁以上

总计

支持

不支持

总计

2)若以44岁为分界点,从不支持房产限购的人中按分层抽样的方法抽取8人参加政策听证会.现从这8人中随机抽2人.

①抽到1人是44岁以下时,求抽到的另一人是44岁以上的概率.

②记抽到44岁以上的人数为X,求随机变量X的分布列及数学期望.

参考数据:

,其中

查看答案和解析>>

同步练习册答案