解:(Ⅰ)当时,
所以
因此f'(2)=l
即曲线y=f(x)在点(2,f(2))处的切线斜率为1
又f(2)=ln2+2
所以曲线y=f(x)在点(2,f(2))处的切线方程为y-(ln2+2)=x-2
即x-y+ln2=0;
(Ⅱ)因为
所以
令g(x)=ax2-x+l-a,x∈(0,+∞)
(1)当a=0时,g(x)=-x+1,x∈(0,+∞)
所以当x∈(0,1)时,g(x)>0,此时f'(x)<
当x∈(1,+∞)时,g(x)<
(2)当a≠0时,由f'(x)=0, 即ax2-x+1-a=0
解得x1=1,x2=-1
①当时,,g(x)≥0恒成立,此时f'(x)≤0,函数f(x)在(0,+∞)上单调递减;
②当时,
x(0,1)时,g(x)>0,此时f'(x)<0,函数f(x)单调递减;
时,g(x)<0,此时f'(x)>0,函数f(x)单调递增;
时,g(x)>0,此时f'(x)<0,函数f(x)单调递减;
③当时,由于
x∈(0,1)时,g(x)>0,此时f'(x)<0,函数f(x)单调递减;
x∈(1,+∞)时,g(x)<0,此时,f'(x)>0,函数f(x)单调递增。
综上所述:
当a≤0时,函数f(x)在(0,1)上单调递减; 函数f(x)在(1,+∞)上单调递增;
当时,函数f(x)在(0,+∞)上单调递减;
当时,函数f(x)在(0,1)上单调递减;
函数f(x)在上单调递增;
函数f(x)在上单调递减。
科目:高中数学 来源:2009-2010学年北京市西城区高二(下)期末数学试卷(文科)(解析版) 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2010-2011学年浙江省杭州市学军中学高一(上)期末数学试卷(解析版) 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2006年重庆市高考数学一模试卷(理科)(解析版) 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2013年黑龙江省高三第四次联考理科数学试卷(解析版) 题型:解答题
选修4—5:不等式选讲
已知函数。
( I)当a=-3时,求的解集;
(Ⅱ)当f(x)定义域为R时,求实数a的取值范围
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com