精英家教网 > 高中数学 > 题目详情

如图,椭圆的中心在坐标原点O,顶点分别是A1,A2,B1,B2,焦点为F1,F2,延长B1F2与A2B2交于P点,若∠B1PA2为钝角,则此椭圆的离心率的取值范围为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
D
分析:由题意,∠B1PA2就是的夹角,设椭圆的长半轴、短半轴、半焦距分别为a,b,c,则=(a,-b)、=(-c,-b),由向量的夹角为钝角可得-ac+b2<0,把b2=a2-c2代入不等式,从而可求椭圆离心率的取值范围.
解答:由题意,∠B1PA2就是的夹角,
设椭圆的长半轴、短半轴、半焦距分别为a,b,c,则=(a,-b)、=(-c,-b),
由向量的夹角为钝角知道的数量积小于0,所以有:-ac+b2<0,
把b2=a2-c2代入不等式得:a2-ac-c2<0,除以a2得1-e-e2<0,
即e2+e-1>0,解得e<或e>
又0<e<1,所以<e<1,
所以椭圆离心率的取值范围为(,1)
故选D.
点评:本题考查椭圆的几何性质,解题的关键是利用道的数量积小于0,建立不等式,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•乌鲁木齐一模)如图,椭圆的中心在坐标原点O,顶点分别是A1,A2,B1,B2,焦点为F1,F2,延长B1F2与A2B2交于P点,若∠B1PA2为钝角,则此椭圆的离心率的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,椭圆的中心在坐标原点O,左右焦点分别为F1,F2,右顶点为A,上顶点为B,离心率e=
35
,三角形△BF1F2的周长为16.直线y=kx(k>0)与AB相交于点D,与椭圆相交于E,F两点.
(1)求该椭圆的标准方程.
(2)求四边形AEBF面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,椭圆的中心在坐标原点,长轴端点为A、B,右焦点为F,且
AF
FB
=1
|
OF
|=1

(Ⅰ)求椭圆的标准方程;
(Ⅱ)过椭圆的右焦点F作直线l1,l2,直线l1与椭圆分别交于点M、N,直线l2与椭圆分别交于点P、Q,且|
MP
|2+|
NQ
|2=|
NP
|2+|
MQ
|2
,求四边形MPNQ的面积S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,椭圆的中心在坐标原点,F为左焦点,A、B分别为长轴和短轴上的一个顶点,当FB⊥AB时,此类椭圆称为“优美椭圆”;类比“优美椭圆”,可推出“优美双曲线”的离心率为
1+
5
2
1+
5
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2014•江门模拟)如图,椭圆Γ的中心在坐标原点O,过右焦点F(1,0)且垂直于椭圆对称轴的弦MN的长为3.
(1)求椭圆Γ的方程;
(2)直线l经过点O交椭圆Γ于P、Q两点,NP=NQ,求直线l的方程.

查看答案和解析>>

同步练习册答案