【题目】已知函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|< )的部分图象如图所示,将函数f(x)的图象向左平移m(m>0)个单位后,得到的图象关于点( ,﹣1)对称,则m的最小值是( )
A.
B.
C. π
D.
【答案】A
【解析】解:根据函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|< )的部分图象, 可得y轴右侧第一条对称轴为x= = ,故 = ﹣ ,∴ω=2.
∵x= 时函数取得最小值,故有2 +φ= ,∴φ= .
再根据B﹣A=﹣3,且Asin(2 + )+B= +B=0,∴A=2,B=﹣1,即f(x)=2sin(2x+ )﹣1.
将函数f(x)的图象向左平移m(m>0)个单位后,得到y=g(x)=2sin(2x+2m+ )﹣1的图象,
根据得到的函数g(x)图象关于点( ,﹣1)对称,可得2 +2m+ =kπ,k∈Z,
∴m= ﹣ ,则m的最小值是 ,
故选:A.
【考点精析】解答此题的关键在于理解函数y=Asin(ωx+φ)的图象变换的相关知识,掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , a1=1,an≠0,2anan+1=tSn﹣2,其中t为常数. (Ⅰ)设bn=an+1+an , 求证:{bn}为等差数列;
(Ⅱ)若t=4,求Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】要测量电视塔AB的高度,在C点测得塔顶的仰角是45°,在D点测得塔顶的仰角是30°,并测得水平面上的∠BCD=120°,CD=40m,则电视塔的高度是( )
A.30m
B.40m
C. m
D. m
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系xOy中,曲线C1的参数方程为 (α为参数,﹣π<α<0),曲线C2的参数方程为 (t为参数),以O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求曲线C1的极坐标方程和曲线C2的普通方程;
(2)射线θ=﹣ 与曲线C1的交点为P,与曲线C2的交点为Q,求线段PQ的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数集A={a1 , a2 , …,an}(1=a1<a2<…<an , n≥2)具有性质P:对任意的k(2≤k≤n),i,j(1≤i≤j≤n),使得ak=ai+aj成立.
(Ⅰ)分别判断数集{1,3,4}与{1,2,3,6}是否具有性质P,并说明理由;
(Ⅱ)求证:an≤2a1+a2+…+an﹣1(n≥2);
(Ⅲ)若an=72,求数集A中所有元素的和的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 (a>b>0)短轴的端点P(0,b)、Q(0,﹣b),长轴的一个端点为M,AB为经过椭圆中心且不在坐标轴上的一条弦,若PA、PB的斜率之积等于﹣ ,则P到直线QM的距离为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【选修4-5:不等式选讲】
已知f(x)=|x﹣1|+|x+2|.
(I)若不等式f(x)>a2对任意实数x恒成立,求实数a的取值的集合T;
(Ⅱ)设m、n∈T,证明: |m+n|<|mn+3|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱ABC﹣A1B1C1中,AC⊥AB,AB=2AA1 , M是AB的中点,△A1MC1是等腰三角形,D为CC1的中点,E为BC上一点.
(Ⅰ)若DE∥平面A1MC1 , 求 ;
(Ⅱ)求直线BG和平面A1MC1所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】公元263年左右,我国数学家刘徽发现,当圆内接多边形的边数无限增加时,多边形面积可无限逼近圆的面积,由此创立了割圆术,利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值3,14,这就是著名的徽率.如图是利用刘徽的割圆术设计的程序框图,则输出的n值为( ) 参考数据: ,sin15°≈0.2588,sin7.5°≈0.1305.
A.12
B.24
C.48
D.96
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com