精英家教网 > 高中数学 > 题目详情
为双曲线的左右焦点,点P在双曲线上,的平分线分线段的比为5∶1,则双曲线的离心率的取值范围是           .

试题分析:∵根据内角平分线的性质可得,再由双曲线的定义可得5PF2-PF2=2a,PF2=,由于 PF2=≥c-a,∴≥c,.再由双曲线的离心率大于1可得,1<e
点评:解决本题的关键是利用PF2=≥c-a构造关于离心率的不等式
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

存在两条直线与双曲线相交于ABCD四点,若四边形ABCD是正方形,则双曲线的离心率的取值范围为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的方程为左、右焦点分别为F1、F2,焦距为4,点M是椭圆C上一点,满足
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点P(0,2)分别作直线PA,PB交椭圆C于A,B两点,设直线PA,PB的斜率分别为k1,k2,求证:直线AB过定点,并求出直线AB的斜率k的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知抛物线的焦点在抛物线上,点是抛物线上的动点.

(Ⅰ)求抛物线的方程及其准线方程;
(Ⅱ)过点作抛物线的两条切线,分别为两个切点,设点到直线的距离为,求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点是双曲线上一点,双曲线两个焦点间的距离等于4,则该双曲线方程是___________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

与抛物线相切倾斜角为的直线L与x轴和y轴的交点分别是A和B,那么过A、B两点的最小圆截抛物线的准线所得的弦长为
A.4                B.2        C.2            D. 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线过定点,动点满足,动点的轨迹为.
(Ⅰ)求的方程;
(Ⅱ)直线交于两点,以为切点分别作的切线,两切线交于点.
①求证:;②若直线交于两点,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的一个顶点与两个焦点构成等边三角形,则离心率e=________。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知A,B两点在抛物线C:x2=4y上,点M(0,4)满足=λ.
(1)求证:
(2)设抛物线C过A、B两点的切线交于点N.
(ⅰ)求证:点N在一条定直线上;    
(ⅱ)设4≤λ≤9,求直线MN在x轴上截距的取值范围.

查看答案和解析>>

同步练习册答案