精英家教网 > 高中数学 > 题目详情

【题目】已知函数),.

1)当时,在定义域上的单调性相反,求b的取值范围;

2)设是函数的两个零点,且,求证:.

【答案】1;(2)证明见解析.

【解析】

(1)根据导数判断g(x)的单调性,然后再分析f(x)b的取值范围;(2)先分别表示出,再利用做差得,将其化简为:;根据要证明的式子:我们可化为,再结合g(x)的性质,判断函数值的正负即可

1)∵

由题意可知,的定义域均为

上单调递减,

时,在定义域上的单调性相反,

上单调递增,

恒成立,

恒成立,

∴只需

(当且仅当时,等号成立),

b的取值范围

2)由已知可得

从而

上单调递减,且

∴当时,

即证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、后从事互联网行业者岗位分布条形图,则下列结论中不一定正确的是( )

A. 互联网行业从业人员中后占一半以上

B. 互联网行业中从事技术岗位的人数超过总人数的

C. 互联网行业中从事运营岗位的人数后比前多

D. 互联网行业中从事运营岗位的人数后比后多

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某区的区人大代表有教师6 人,分别来自甲、乙、丙、丁四个学校,其中甲校教师记为,乙校教师记为,丙校教师记为C,丁校教师记为D.现从这6 名教师代表中选出 3 名教师组成十九大报告宣讲团,要求甲、乙、丙、丁四个学校中,每校至多选出1.

1)请列出十九大报告宣讲团组成人员的全部可能结果;

2)求教师被选中的概率;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(Ⅰ) 求曲线在点处的切线方程;

(Ⅱ) 讨论函数的单调性;

(Ⅲ) 设,当时,若对任意的,存在,使得,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体ABCDA1B1C1D1中,底面ABCD是边长为2的正方形.

1)证明:A1C1平面ACD1

2)求异面直线CDAD1所成角的大小;

3)已知三棱锥D1ACD的体积为,求AA1的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市通过抽样调查的方法获得了100户居民某月用水量(单位:t)的频率分布直方图:

(Ⅰ)求这100户居民该月用水量的平均值;

(Ⅱ)从该月用水量在两个区间的用户中,用分层抽样的方法邀请5户的户主共5人参加水价调整方案听证会,现从这5人中随机选取2人在会上进行陈述发言,求选取的2人均来自用水量低于2.5t的用户的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左顶点为,右焦点为,直线轴相交于点,且的中点.

(Ⅰ)求椭圆的离心率;

(Ⅱ)过点的直线与椭圆相交于两点,都在轴上方,并且之间,且到直线的距离是到直线距离的倍.

①记的面积分别为,求

②若原点到直线的距离为,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四校锥PABCD中,底面ABCD是菱形,∠BAD60°,边长为4的正PAD所在平面与平面ABCD垂直,点EAD的中点,点Q是侧棱PC的中点.

1)求四棱锥PABCD的体积;

2)求证:PA∥平面BDQ

3)在线段AB上是否存在点F,使直线PF与平面PAD所成的角为30°?若存在,求出AF的长,若不存在,请说明理由?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某汽车公司为调查4S店个数对该公司汽车销量的影响,对同等规模的ABCD四座城市的4S店一个月某型号汽车销量进行了统计,结果如下表:

城市

A

B

C

D

4S店个数x

3

4

6

7

销售台数y

18

26

34

42

1)由散点图知yx具有线性相关关系,求y关于x的线性回归方程;

2)根据统计每个城市汽车的盈利(万元)与该城市4S店的个数x符合函数,为扩大销售,该公司在同等规模的城市E预计要开设多少个4S店,才能使E市的4S店一个月某型号骑车销售盈利达到最大,并求出最大值.

附:回归方程中的斜率和截距的最小二乘法估计公式分别为:

查看答案和解析>>

同步练习册答案