精英家教网 > 高中数学 > 题目详情

(本小题13分)已知椭圆,椭圆的长轴为短轴,且与有相同的离心率.
(1)求椭圆的方程;
(2)设O为坐标原点,点A,B分别在椭圆上,,求直线的方程.

(1)  (2)

解析试题分析:(1)由已知可设椭圆的方程为 
其离心率为,故,则
故椭圆的方程为        5分
(2)解法一 两点的坐标分别记为 
及(1)知,三点共线且点,不在轴上,
因此可以设直线的方程为
代入中,得,所以
代入中,则,所以
,得,即
解得,故直线的方程为         13分
考点:椭圆方程性质及直线与椭圆相交问题
点评:第二问由已知中的向量可知只需求解出A,B两点坐标代入即可得到关于所求直线斜率k的直线,因此设AB直线,联立方程解出方程组

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知点是F抛物线与椭圆的公共焦点,且椭圆的离心率为

(1)求椭圆的方程;
(2)过抛物线上一点P,作抛物线的切线,切点P在第一象限,如图,设切线与椭圆相交于不同的两点A、B,记直线OP,FA,FB的斜率分别为(其中为坐标原点),若,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点M是圆C:上的一点,且轴,为垂足,点满足,记动点的轨迹为曲线E.
(Ⅰ)求曲线E的方程;
(Ⅱ)若AB是曲线E的长为2的动弦,O为坐标原点,求面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知点R(-3,0),点P在y轴上,点Q在x轴的正半轴上,点M在直线PQ上 ,且满足.
(Ⅰ)当点P在y轴上移动时,求点M的轨迹C的方程;
(Ⅱ)设为轨迹C上两点,且,N(1,0),求实数,使,且.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的右焦点为,离心率为
(1)若,求椭圆的方程。
(2)设直线与椭圆相交于两点,分别为线段的中点。若坐标原点在以线段为直径的圆上,且,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系中,点为椭圆的右顶点, 点,点在椭圆上, .


(1)求直线的方程;
(2)求直线被过三点的圆截得的弦长;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知椭圆的离心率为,定点,椭圆短轴的端点是,且.
(Ⅰ)求椭圆的方程;
(Ⅱ)设过点且斜率不为的直线交椭圆两点.试问轴上是否存在定点,使平分?若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

分别是椭圆的左,右焦点。
(Ⅰ)若是第一象限内该椭圆上的一点,且,求点的坐标。
(Ⅱ)设过定点的直线与椭圆交于不同的两点,且为锐角(其中O为坐标原点),求直线的斜率的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知椭圆的中心在坐标原点、对称轴为坐标轴,且抛物线的焦点是它的一个焦点,又点在该椭圆上.
(1)求椭圆的方程;
(2)若斜率为直线与椭圆交于不同的两点,当面积的最大值时,求直线的方程.

查看答案和解析>>

同步练习册答案