精英家教网 > 高中数学 > 题目详情
如图,已知菱形ABCD的边长为2,,S为平面ABCD外一点,为正三角形,,M、N分别为SB、SC的中点。

(Ⅰ)求证:平面平面ABCD;
(Ⅱ)求二面角A—SB—C的余弦值;
(Ⅲ)求四棱锥M—ABN的体积。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

如图,在正三角形ABC中, D,E,F分别为AB,BC,AC的中点,G,H,I分别为DE,FC,EF的中点,将△ABC沿DE,EF,DF折成三棱锥,则异面直线BG与IH所成的角为
A.B.arccosC.D.arccos

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图2,在直三棱柱ABC-中,AB=1,

(Ⅰ)证明:
(Ⅱ)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分)
如图,四棱锥中,底面ABCD为矩形,底面ABCD,AD=PD=1,AB=),E,F分别CD.PB的中点。

(Ⅰ)求证:EF平面PAB;,
(Ⅱ)当时,求AC与平面AEF所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在空间五面体ABCDE中,四边形ABCD是正方形,,. 点的中点. 求证:

(I)
(II)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知三棱锥的棱长都相等,分别是棱的中点,则所成的角为 (   ) .     
                              
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分15分)
如图,在四棱锥中,底面为正方形,平面,已知为线段上的动点.

(Ⅰ)若的中点,求证:平面
(Ⅱ)若二面角与二面角的大小相等,求长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图5,平面ABDE⊥平面ABC,ACBC,AC=BC=4,四边形ABDE是直角梯形,BDAE,BDBA,AE=2BD=4,O、M分别为CE、AB的中点.

(Ⅰ) 证明:OD//平面ABC;
(Ⅱ)能否在EM上找一点N,使得ON⊥平面ABDE?
若能,请指出点N的位置,并加以证明;
若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知直角梯形中,
,垂足为,的中点,现将沿折叠,使得

(1)求证:
(2)设四棱锥D-ABCE的体积为V,其外接球体积为,求V的值.

查看答案和解析>>

同步练习册答案