精英家教网 > 高中数学 > 题目详情

【题目】锐角三角形的内角的对边分别为

(Ⅰ)求的大小;

(Ⅱ)求的取值范围.

【答案】解:(1)由,根据正弦定理得………2

所以,由为锐角三角形得………………4

2

……………………………8

为锐角三角形知,

,所以……………………………11

由此有

所以, 的取值范围为……………………………12

【解析】试题分析:(1)由,根据正弦定理得,所以,由为锐角三角形得;(2)由(1)知,利用诱导公式与辅助角公式变形化简得,由为锐角三角形知,因此的取值范围为

试题解析:(1)由,根据正弦定理得,所以

为锐角三角形得

2

为锐角三角形知,

所以.由此有

所以, 的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网+”,符合“低碳出行”的理念,已越来越多地引起了人们的关注.某部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[50,60),[60,70),…,[90,100] 分成5组,制成如图所示频率分直方图.

(Ⅰ) 求图中的值;

(Ⅱ) 已知满意度评分值在[90,100]内的男生数与女生数的比为2:1,若在满意度评分值为[90,100]的人中随机抽取2人进行座谈,求所抽取的两人中至少有一名女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|2x﹣a|,g(x)=x+1.

(1)若a=1,求不等式f(x)≤1的解集;

(2)对任意的x∈R,f(x)+|g(x)|≥a2+2a(a>0)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各组函数中,表示同一函数的是(
A.y=x+1与y=
B.f(x)= 与g(x)=x
C.f(x)=|x|与g(x)=
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果集合A,B,同时满足A∪B={1,2,3,4},A∩B={1},A≠{1},B≠{1},就称有序集对(A,B)为“好集对”.这里有序集对(A,B)意指,当A≠B时,(A,B)和(B,A)是不同的集对,那么“好集对”一共有( )个.
A.5
B.6
C.7
D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某社区为丰富居民节日活动,组织了迎新春象棋大赛,已知报名的选手情况统计如下表:

组别

总计

中年组

91

老年组

16

已知中年组女性选手人数是仅比老年组女性选手人数多2人.若对中年组和老年组分别利用分层抽样的方法抽取部分报名者参加比赛,已知老年组抽取了5人,其中女性3人,中年组抽取了7人.

)求表格中的数据

)若从选出的中年组的选手中随机抽取两名进行比赛,求至少有一名女性选手的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

)若函数上单调递增,求实数的取值范围;

)若,证明:恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中, 的中点.

(1)求证:

(2)设平面平面 ,求二面角的平面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知以为圆心的圆及其上一点.

(1)设圆轴相切,与圆外切,且圆心在直线上,求圆的标准方程;

(2)设平行于的直线与圆相交于两点,且,求直线的方程;

(3)设点满足:存在圆上的两点,使得,求实数的取值范围.

查看答案和解析>>

同步练习册答案