精英家教网 > 高中数学 > 题目详情
解方程log2(2x+1+2)=
2
log2(2x+1)
log2(2x+1+2)=
2
log2(2x+1)

∴1+log2(2x+1)=
2
log2(2x+1)

令t=log2(2x+1)则由于2x+1>1故log2(2x+1)>0即t>0
①变t2+t-2=0
∴t=1或t=-2(舍).
即log2(2x+1)=1
∴2x+1=2
∴2x=1
∴x=0为方程解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

解方程log2(2x+1)=log2(x2-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

解方程log2(2x+1+2)=
2log2(2x+1)

查看答案和解析>>

科目:高中数学 来源:2012年人教A版高中数学必修1对数函数及其性质练习卷 题型:填空题

方程log2(2x+1)log2(2x+1+2)=2的解为            .

 

查看答案和解析>>

科目:高中数学 来源: 题型:

方程log2(2x+1)log2(2x+1+2)=2的解为            .

查看答案和解析>>

同步练习册答案